|
[1] Liddy, E.D., Natural language processing. 2001. [2] Navigli, R. Natural Language Understanding: Instructions for (Present and Future) Use. in IJCAI. 2018. [3] 臺灣大學會計學研究所學位論文, 林.J., 財經領域情緒辭典之建置與其有效性之驗證-以財經新聞為元件. 2013: p. 1-60. [4] 張津挺, 中文財務情緒字典建構與其在財務新聞分析之應用 = On the Construction and Analysis of Chinese Financial Sentiment Lexicon for Financial News. 2016: 臺北市立大學 ;. [5] Shin, B., T. Lee, and J.D.J.a.p.a. Choi, Lexicon integrated cnn models with attention for sentiment analysis. 2016. [6] Frawley, W.J., G. Piatetsky-Shapiro, and C.J.J.A.m. Matheus, Knowledge discovery in databases: An overview. 1992. 13(3): p. 57. [7] Fayyad, U., G. Piatetsky-Shapiro, and P.J.C.o.t.A. Smyth, The KDD process for extracting useful knowledge from volumes of data. 1996. 39(11): p. 27-34. [8] Harris, Z.S.J.W., Distributional structure. 1954. 10(2-3): p. 146-162. [9] Firth, J.R.J.S.i.l.a., A synopsis of linguistic theory, 1930-1955. 1957. [10] Mikolov, T., et al., Efficient estimation of word representations in vector space. 2013. [11] LeCun, Y., Y. Bengio, and G.J.n. Hinton, Deep learning. 2015. 521(7553): p. 436. [12] Hochreiter, S. and J.J.N.c. Schmidhuber, Long short-term memory. 1997. 9(8): p. 1735-1780. [13] Olah, C.J.G.b., posted on August, Understanding lstm networks. 2015. 27: p. 2015. [14] Goo, C.-W.J.臺., 雙層語意控制之自然語言理解與自動對話摘要. 2018: p. 1-45. [15] Vaswani, A., et al. Attention is all you need. in Advances in neural information processing systems. 2017. [16] Devlin, J., et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018. [17] Leskovec, J., A. Rajaraman, and J.D. Ullman, Mining of massive datasets. 2014: Cambridge university press. [18] Mikolov, T., et al. Distributed representations of words and phrases and their compositionality. in Advances in neural information processing systems. 2013. [19] Koppel, M. and J.J.C.I. Schler, The importance of neutral examples for learning sentiment. 2006. 22(2): p. 100-109. [20] Fleiss, J.L.J.P.b., Measuring nominal scale agreement among many raters. 1971. 76(5): p. 378. [21] Landis, J.R. and G.G.J.b. Koch, The measurement of observer agreement for categorical data. 1977: p. 159-174. [22] Kim, Y.J.a.p.a., Convolutional neural networks for sentence classification. 2014. [23] Chang, C.-C., C.-J.J.A.t.o.i.s. Lin, and technology, LIBSVM: a library for support vector machines. 2011. 2(3): p. 27. [24] Pang, B. and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. in Proceedings of the 43rd annual meeting on association for computational linguistics. 2005. Association for Computational Linguistics. [25] Baccianella, S., A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. in Lrec. 2010.
|