|
1. Saunders, A. E.; Sigman, M. B.; Korgel, B. A., Growth Kinetics and Metastability of Monodisperse Tetraoctylammonium Bromide Capped Gold Nanocrystals. The Journal of Physical Chemistry B 2004, 108, 193-199. 2. Pepperberg, I. M., Grey parrot (Psittacus erithacus) numerical abilities: Addition and further experiments on a zero-like concept. J Comp Psychol 2006, 120, 1-11. 3. Aikens, C. M., Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters. The Journal of Physical Chemistry Letters 2011, 2, 99-104. 4. Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H., Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano 2017, 11, 5558-5566. 5. Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D., Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Analytica Chimica Acta 2013, 776, 79-86. 6. Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B., Nanoparticles for bioimaging. Advances in Colloid and Interface Science 2006, 123-126, 471-485. 7. Cheng, N.; Tian, J.; Liu, Q.; Ge, C.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X., Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants. ACS Applied Materials & Interfaces 2013, 5, 6815-6819. 8. Xu, X.; Wang, J.; Jiao, K.; Yang, X., Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosensors and Bioelectronics 2009, 24, 3153-3158. 9. Martinson, C. A.; Reddy, K. J., Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science 2009, 336, 406-411. 10. Chen, W.; Fang, X.; Li, H.; Cao, H.; Kong, J., A Simple Paper-Based Colorimetric Device for Rapid Mercury(II) Assay. Scientific Reports 2016, 6, 31948. 11. Wang, Y.; He, J.; Liu, C.; Chong, W. H.; Chen, H., Thermodynamics versus Kinetics in Nanosynthesis. Angew Chem Int Ed 2015, 54, 2022-2051. 12. Thanh, N. T. K.; Maclean, N.; Mahiddine, S., Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews 2014, 114, 7610-7630. 13. Polte, J.; Ahner, T. T.; Delissen, F.; Sokolov, S.; Emmerling, F.; Thünemann, A. F.; Kraehnert, R., Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled In Situ XANES and SAXS Evaluation. Journal of the American Chemical Society 2010, 132, 1296-1301. 14. Ma, Z.; Sui, S.-F., Naked-Eye Sensitive Detection of Immunoglubulin G by Enlargement of Au Nanoparticles In Vitro. Angew Chem Int Ed 2002, 41, 2176-2179. 15. Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58, 267-297. 16. Link, S.; El-Sayed, M. A., Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B 1999, 103, 4212-4217. 17. Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B. F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S., Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017, 28, 92. 18. Sönnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 2005, 23, 741-745. 19. Li, L.; Li, B.; Cheng, D.; Mao, L., Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 2010, 122, 895-900. 20. Chen, Z.; Tan, L.; Hu, L.; Zhang, Y.; Wang, S.; Lv, F., Real Colorimetric Thrombin Aptasensor by Masking Surfaces of Catalytically Active Gold Nanoparticles. ACS Applied Materials & Interfaces 2016, 8, 102-108. 21. Gadzekpo, V. P. Y.; Bühlmann, P.; Xiao, K. P.; Aoki, H.; Umezawa, Y., Development of an ion-channel sensor for heparin detection. Anal Chim Acta 2000, 411, 163-173. 22. Volpi, N.; Maccari, F.; Suwan, J.; Linhardt, R. J., Electrophoresis for the analysis of heparin purity and quality. Electrophoresis 2012, 33, 1531-1537. 23. Yan, H.; Wang, H.-F., Turn-on Room Temperature Phosphorescence Assay of Heparin with Tunable Sensitivity and Detection Window Based on Target-Induced Self-Assembly of Polyethyleneimine Capped Mn-Doped ZnS Quantum Dots. Anal Chem 2011, 83, 8589-8595. 24. Saad, O. M.; Leary, J. A., Heparin Sequencing Using Enzymatic Digestion and ESI-MSn with HOST: A Heparin/HS Oligosaccharide Sequencing Tool. Anal Chem 2005, 77, 5902-5911. 25. Thirupathi, P.; Park, J.-Y.; Neupane, L. N.; Kishore, M. Y. L. N.; Lee, K.-H., Pyrene Excimer-Based Peptidyl Chemosensors for the Sensitive Detection of Low Levels of Heparin in 100% Aqueous Solutions and Serum Samples. ACS Applied Materials & Interfaces 2015, 7, 14243-14253. 26. Kim, D.-H.; Park, Y. J.; Jung, K. H.; Lee, K.-H., Ratiometric Detection of Nanomolar Concentrations of Heparin in Serum and Plasma Samples Using a Fluorescent Chemosensor Based on Peptides. Anal Chem 2014, 86, 6580-6586. 27. Zhong, Z.; Anslyn, E. V., A Colorimetric Sensing Ensemble for Heparin. J Am Chem Soc 2002, 124, 9014-9015. 28. Wang, S.; Chang, Y.-T., Combinatorial Synthesis of Benzimidazolium Dyes and Its Diversity Directed Application toward GTP-Selective Fluorescent Chemosensors. J Am Chem Soc 2006, 128, 10380-10381. 29. Qi, H.; Zhang, L.; Yang, L.; Yu, P.; Mao, L., Anion-Exchange-Based Amperometric Assay for Heparin Using Polyimidazolium as Synthetic Receptor. Anal Chem 2013, 85, 3439-3445. 30. Shvarev, A.; Bakker, E., Response Characteristics of a Reversible Electrochemical Sensor for the Polyion Protamine. Anal Chem 2005, 77, 5221-5228. 31. Huo, H. Y.; Luo, H. Q.; Li, N. B., Electrochemical sensor for heparin based on a poly(thionine) modified glassy carbon electrode. Microchimica Acta 2009, 167, 195. 32. Li, L.; Liang, Y.; Liu, Y., Designing of molecularly imprinted polymer-based potentiometric sensor for the determination of heparin. Anal Biochem 2013, 434, 242-246. 33. Chen, Y.; Liang, R. N.; Qin, W., Potentiometric sensor for sensitive and selective detection of heparin. Chin Chem Lett 2012, 23, 233-236. 34. Rengaraj, A.; Haldorai, Y.; Hwang, S. K.; Lee, E.; Oh, M.-H.; Jeon, T.-J.; Han, Y.-K.; Huh, Y. S., A protamine-conjugated gold decorated graphene oxide composite as an electrochemical platform for heparin detection. Bioelectrochemistry 2019, 128, 211-217. 35. Li, S.; Gao, M.; Wang, S.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z., Light up detection of heparin based on aggregation-induced emission and synergistic counter ion displacement. Chem Commun 2017, 53, 4795-4798. 36. Wang, M.; Zhang, D.; Zhang, G.; Zhu, D., The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chem Commun 2008, 4469-4471. 37. Pu, K.-Y.; Liu, B., A Multicolor Cationic Conjugated Polymer for Naked-Eye Detection and Quantification of Heparin. Macromolecules 2008, 41, 6636-6640. 38. Cheng, T.-T.; Yao, J.-L.; Gao, X.; Sun, W.; Shi, S.; Yao, T.-M., A new fluorescence “switch on” assay for heparin detection by using a functional ruthenium polypyridyl complex. Analyst 2013, 138, 3483-3489. 39. Dai, Q.; Liu, W.; Zhuang, X.; Wu, J.; Zhang, H.; Wang, P., Ratiometric Fluorescence Sensor Based on a Pyrene Derivative and Quantification Detection of Heparin in Aqueous Solution and Serum. Anal Chem 2011, 83, 6559-6564. 40. Sun, W.; Bandmann, H.; Schrader, T., A Fluorescent Polymeric Heparin Sensor. Chemistry – A European Journal 2007, 13, 7701-7707. 41. Hu, L.; Liao, H.; Feng, L.; Wang, M.; Fu, W., Accelerating the Peroxidase-Like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity. Anal Chem 2018, 90, 6247-6252. 42. Ma, X.; Kou, X.; Xu, Y.; Yang, D.; Miao, P., Colorimetric sensing strategy for heparin assay based on PDDA-induced aggregation of gold nanoparticles. Nanoscale Advances 2019, 1, 486-489. 43. Murray, D. J.; Brosnahan, W. J.; Pennell, B.; Kapalanski, D.; Weiler, J. M.; Olson, J., Heparin detection by the activated coagulation time: A comparison of the sensitivity of coagulation tests and heparin assays. Journal of Cardiothoracic and Vascular Anesthesia 1997, 11, 24-28. 44. Raymond, P. D.; Ray, M. J.; Callen, S. N.; Marsh, N. A., Heparin monitoring during cardiac surgery. Part 1: validation of whole-blood heparin concentration and activated clotting time. Perfusion 2003, 18, 269-276. 45. You, J.-G.; Liu, Y.-W.; Lu, C.-Y.; Tseng, W.-L.; Yu, C.-J., Colorimetric assay of heparin in plasma based on the inhibition of oxidase-like activity of citrate-capped platinum nanoparticles. Biosensors Bioelectron 2017, 92, 442-448. 46. Lin, K. Y.; Kwong, G. A.; Warren, A. D.; Wood, D. K.; Bhatia, S. N., Nanoparticles That Sense Thrombin Activity As Synthetic Urinary Biomarkers of Thrombosis. ACS Nano 2013, 7, 9001-9009. 47. Shen, G.; Zhang, H.; Yang, C.; Yang, Q.; Tang, Y., Thrombin Ultrasensitive Detection Based on Chiral Supramolecular Assembly Signal-Amplified Strategy Induced by Thrombin-Binding Aptamer. Anal Chem 2017, 89, 548-551. 48. Rezaie, A. R., Tryptophan 60-D in the B-insertion loop of thrombin modulates the thrombin-antithrombin reaction. Biochemistry 1996, 35, 1918-24. 49. Chobanian, H. R.; Pio, B.; Guo, Y.; Shen, H.; Huffman, M. A.; Madeira, M.; Salituro, G.; Terebetski, J. L.; Ormes, J.; Jochnowitz, N.; Hoos, L.; Zhou, Y.; Lewis, D.; Hawes, B.; Mitnaul, L.; O’Neill, K.; Ellsworth, K.; Wang, L.; Biftu, T.; Duffy, J. L., Improved Stability of Proline-Derived Direct Thrombin Inhibitors through Hydroxyl to Heterocycle Replacement. ACS Medicinal Chemistry Letters 2015, 6, 553-557. 50. Deng, Z. J.; Liang, M.; Toth, I.; Monteiro, M. J.; Minchin, R. F., Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 2012, 6, 8962-9. 51. Zauner, G.; Hoffmann, M.; Rapp, E.; Koeleman, C. A.; Dragan, I.; Deelder, A. M.; Wuhrer, M.; Hensbergen, P. J., Glycoproteomic analysis of human fibrinogen reveals novel regions of O-glycosylation. J Proteome Res 2012, 11, 5804-14. 52. Hu, J.; Zheng, P. C.; Jiang, J. H.; Shen, G. L.; Yu, R. Q.; Liu, G. K., Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Anal Chem 2009, 81, 87-93. 53. Wermes, C.; Siebke, A.; Wilhelm, C.; Sykora, K.; Glueer, S.; Ganser, A.; Prondzinski, M., Expression of Protease-activated Receptors in Neuroblastoma Cells. 2003; pp 305-311. 54. Zhao, D.; Peng, Y.; Xu, L.; Zhou, W.; Wang, Q.; Guo, L., Liquid-Crystal Biosensor Based on Nickel-Nanosphere-Induced Homeotropic Alignment for the Amplified Detection of Thrombin. ACS Applied Materials & Interfaces 2015, 7, 23418-23422. 55. Palekar, R. U.; Myerson, J. W.; Schlesinger, P. H.; Sadler, J. E.; Pan, H.; Wickline, S. A., Thrombin-Targeted Liposomes Establish a Sustained Localized Anticlotting Barrier against Acute Thrombosis. Mol Pharm 2013, 10, 4168-4175. 56. Fuglestad, B.; Gasper, P. M.; McCammon, J. A.; Markwick, P. R. L.; Komives, E. A., Correlated Motions and Residual Frustration in Thrombin. The Journal of Physical Chemistry B 2013, 117, 12857-12863. 57. Fan, J.; Zhang, Y.; Chang, X.; Zhang, B.; Jiang, D.; Saito, M.; Li, Z., Antithrombotic and fibrinolytic activities of methanolic extract of aged sorghum vinegar. J Agric Food Chem 2009, 57, 8683-7. 58. Hsieh, C.-L.; Peng, C.-H.; Chyau, C.-C.; Lin, Y.-C.; Wang, H.-E.; Peng, R. Y., Low-Density Lipoprotein, Collagen, and Thrombin Models Reveal that Rosemarinus officinalis L. Exhibits Potent Antiglycative Effects. J Agric Food Chem 2007, 55, 2884-2891. 59. Römhildt, L.; Pahlke, C.; Zörgiebel, F.; Braun, H.-G.; Opitz, J.; Baraban, L.; Cuniberti, G., Patterned Biochemical Functionalization Improves Aptamer-Based Detection of Unlabeled Thrombin in a Sandwich Assay. ACS Applied Materials & Interfaces 2013, 5, 12029-12035. 60. Liu, X.; Hua, X.; Fan, Q.; Chao, J.; Su, S.; Huang, Y.-Q.; Wang, L.; Huang, W., Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New Föster Resonance Energy Transfer System. ACS Applied Materials & Interfaces 2015, 7, 16458-16465. 61. Liu, X.; Shi, L.; Hua, X.; Huang, Y.; Su, S.; Fan, Q.; Wang, L.; Huang, W., Target-induced conjunction of split aptamer fragments and assembly with a water-soluble conjugated polymer for improved protein detection. ACS Appl Mater Interfaces 2014, 6, 3406-12. 62. Wang, Y.; Liu, B., Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 2009, 25, 12787-93. 63. Zhang, D.; Zhao, Q.; Zhao, B.; Wang, H., Fluorescence anisotropy reduction of allosteric aptamer for sensitive and specific protein signaling. Anal Chem 2012, 84, 3070-4. 64. Xue, L.; Zhou, X.; Xing, D., Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem 2012, 84, 3507-13. 65. Tennico, Y. H.; Hutanu, D.; Koesdjojo, M. T.; Bartel, C. M.; Remcho, V. T., On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal Chem 2010, 82, 5591-7. 66. Wang, Y.; Bao, L.; Liu, Z.; Pang, D. W., Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 2011, 83, 8130-7. 67. Huang, D.; Niu, C.; Li, Z.; Ruan, M.; Wang, X.; Zeng, G., A sensitive strategy for label-free and time-resolved fluorescence assay of thrombin using Tb-complex and unmodified gold nanoparticles. Analyst 2012, 137, 5607-13. 68. Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H., Self-Assembled DNA Hydrogel as Switchable Material for Aptamer-Based Fluorescent Detection of Protein. Anal Chem 2013, 85, 11077-11082. 69. Lin, B.; Sun, Q.; Liu, K.; Lu, D.; Fu, Y.; Xu, Z.; Zhang, W., Label-Free Colorimetric Protein Assay and Logic Gates Design Based on the Self-assembly of Hemin-Graphene Hybrid Nanosheet. Langmuir 2014, 30, 2144-2151. 70. Chang, C.-C.; Chen, C.-P.; Wu, T.-H.; Yang, C.-H.; Lin, C.-W.; Chen, C.-Y. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications Nanomaterials (Basel, Switzerland) PubMed. 2019,45,1265-1278 71. Cunningham, J. C.; Brenes, N. J.; Crooks, R. M., Paper Electrochemical Device for Detection of DNA and Thrombin by Target-Induced Conformational Switching. Anal Chem 2014, 86, 6166-6170. 72. Lin, J.-H.; Huang, K.-H.; Zhan, S.-W.; Yu, C.-J.; Tseng, W.-L.; Hsieh, M.-M., Inhibition of catalytic activity of fibrinogen-stabilized gold nanoparticles via thrombin-induced inclusion of nanoparticle into fibrin: Application for thrombin sensing with more than 104-fold selectivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 210, 59-65. 73. Vidal, E.; Lorenzetti, A. S.; Lista, A. G.; Domini, C. E., Micropaper-based analytical device (μPAD) for the simultaneous determination of nitrite and fluoride using a smartphone. Microchem J 2018, 143, 467-473. 74. Wu, S.; Li, D.; Gao, Z.; Wang, J., Controlled etching of gold nanorods by the Au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Microchimica Acta 2017, 184, 4383-4391. 75. Gabriel, E. F. M.; Garcia, P. T.; Cardoso, T. M. G.; Lopes, F. M.; Martins, F. T.; Coltro, W. K. T., Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst 2016, 141, 4749-4756.
|