|
Schwarz, H. P., & Dorner, F. (2003). Karl landsteiner and his major contributions to haematology. British Journal of Haematology, 121(4), 556-565. doi:10.1046/j.1365- 2141.2003.04295.x Margie, P. (2000) The hepatitis B story. Beyond Discovery: The Path from Research to Human Benefit Filler, A. G. (2009). The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI. Nature Precedings. doi:http://hdl.handle.net/10101/npre.2009.3267.1 Yin J, Vogel RL (2017) Using the ROC Curve to Measure Association and Evaluate Prediction Accuracy for a Binary Outcome. Biom Biostat Int J 5(3): 00134. DOI: 10.15406/bbij.2017.05.00134 Youden, W. J. (1950). "Index for rating diagnostic tests." Cancer 3(1): 32-35. Xu, T., et al. (2015). "Flexible combination of multiple diagnostic biomarkers to improve diagnostic accuracy." BMC Med Res Methodol 15: 94. Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Paper presented at the Proceedings of the First International Workshop on Multiple Classifier Systems. Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123-140. Bauer E,& Kohavi R. (1999) An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Journal of Machine Learning. 36:105-139. Hastie, T., Tibshirani, R.,& Friedman, J. (2009). The Elements of Statistical Learning.New York, NY, USA: Springer New York Inc. Kearns, M. (1988). Thoughts on Hypothesis Boosting, Unpublished manuscript (Machine Learning class project, December 1988) Kearns, M., & Valiant, L. (1994). Cryptographic limitations on learning Boolean formulae and finite automata. J. ACM, 41(1), 67-95. Schapire, R. E. (1990). The Strength of Weak Learnability. Mach. Learn., 5(2), 197-227. doi:10.1023/a:1022648800760 Freund, Y. (1995). Boosting a weak learning algorithm by majority. Inf. Comput.,121(2), 256-285. doi:10.1006/inco.1995.1136 Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Paper presented at the Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, Bari, Italy. A. Mayr, & M. Schmid. (2014) The Evolution of Boosting Algorithms: From Machine Learning to Statistical Modelling A. Mayr. (2017) An Update on Statistical Boosting in Biomedicine J. H. Friedman. (2001) Greedy function approximation: a gradient boosting machine. The Annals of Statistics, vol. 29, no. 5, pp.1189–1232. B. Hofner, & M. Schmid. (2014) Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost. Mayr, A., & Schmid, M. (2014). Boosting the Concordance Index for Survival Data – A Unified Framework To Derive and Evaluate Biomarker Combinations. PLOS ONE, 9(1), e84483. doi:10.1371/journal.pone.0084483 Golub, T et al (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Park, Y., & Kang, Y. (2019). Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach.
|