跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 23:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳翰絢
研究生(外文):Han-Hsuan Wu
論文名稱:優碘對兒童口內菌群之抗菌影響
論文名稱(外文):The Antibacterial Effect of Betadine on Oral Microflora in Children
指導教授:劉正芬
指導教授(外文):Jeng-Feng Liu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:37
中文關鍵詞:兒童齲齒變形鏈球菌乳酸菌優碘抑菌效果
外文關鍵詞:childhood cariesMutans streptococciLactobacillibetadineantibacterial effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織的調查,齲齒是最常見的兒童口腔問題。相較於其他種類的口腔細菌,變形鏈球菌(Mutans streptococci, SM)及乳酸菌(Lactobacilli, LB)被認為和齲齒高度相關,而優碘可藉由滲透入細菌之細胞膜來抑制細菌形成生物膜並減少細菌數量,進而達到抑菌效果。然而許多對於優碘抑菌之研究多針對用優碘漱口後之影響,因此,本篇研究之目的為了解在牙齒表面塗抹優碘對於變形鏈球菌與乳酸菌之影響以及是否反映在齲齒狀況。
總共收案了63位健康、沒有任何系統性疾病的受試者,每一位受試者的基本資料、齲齒指數以及同意書都在第一次試驗前取得,接著63位受試者藉由塊狀隨機分派(block randomization)的方式分為實驗組(塗抹優碘)及對照組(塗抹生理食鹽水),首先在下顎後牙區之舌側面取得牙菌斑樣本,並根據實驗組及對照組分別塗抹優碘及生理食鹽水在全口之牙齒表面,並將採樣之牙菌斑培養至Ivoclar Vivadent公司所製造之CRT® bacteria培養組上,在一週、三個月、六個月追蹤將進行同樣的步驟,接著判讀培養結果,將CRT® bacteria培養組分為分數0到4分,分別代表「沒有生長」、「<104 CFU/ml」、「104~105 CFU/ml」、「105~106 CFU/ml」以及「>106 CFU/ml」,統計分析方法使用獨立樣本t檢定及費雪爾正確性檢定,並分析檢查者之間及檢查者內部之一致性。
1至10歲的63位受試者中有25位男性和38位女性,平均年齡4.60 ± 2.03歲,平均齲齒指數(dmft)為9.26 ± 4.44,對照組變形鏈球菌平均分數一開始、一週、三個月及六個月分別為2.06、1.64、1.31及1.44;乳酸菌則分別為1.20、1.02、0.96及0.89,實驗組變形鏈球菌平均分數一開始、一週、三個月及六個月分別為1.82、1.82、1.37及1.71;乳酸菌分別為1.50、1.30、1.11及1.18,兩組之間在一開始、一週、三個月及六個月皆沒有統計上顯著差異。再者,一週追蹤,優碘對變形鏈球菌(p<0.05)與乳酸菌(p<0.05)之抗菌能力顯著地優於生理食鹽水,但優碘之抗菌能力在三個月及六個月追蹤便不明顯。總結來說,優碘一週追蹤可能有即時的抑菌效果但在三到六個月後之追蹤則不明顯。
Dental caries has been the most common dental problem in children according to the WHO’s data. Comparing to other species, Mutans streptococci (SM) and Lactobacilli (LB) have higher association with dental caries. Betadine has been used as antibacterial agent which can penetrate into bacterial membrane to inhibit bacteria forming biofilm and decrease the bacteria counts. However, many studies only showed inhibitory effect after rinsing betadine. The aim of present study was to evaluate the effects of betadine application on tooth surfaces on SM and LB counts and caries condition.
We recruited 63 patients without any systemic disease. The general data and dmft were recorded and inform consents were received for each patient. The 63 patients were randomly allocated into experimental (betadine) group and control (normal saline) group through block randomization method. Plaque samples were collected from lingual surfaces of lower posterior teeth and then betadine or normal saline were applied over all teeth surfaces depending on group allocation. The CRT® bacteria kits (Ivoclar Vivadent) were used for bacterial culture. At one-week (1W), three-month (3M) and six-month (6M) follow-up, the same procedures were performed again. The bacteria counts were scored into 0, 1, 2, 3 and 4. CRT scores 0, 1, 2, 3 and 4 denoted as bacteria counts ‘no growth’, ‘<104 CFU/ml’, ‘104~105 CFU/ml’, ‘105~106 CFU/ml’ and ‘>106 CFU/ml’ respectively. The independent-t test and Fisher’s exact test were used for statistical analysis. The kappa values for inter-examiner and intra-examiner were also evaluated.
There were 25 males and 38 females and ranged from 1 to 10 years old (average: 4.60 ± 2.03 years old). The average dmft score was 9.26 ± 4.44. In control group, the mean scores for SM count at initial, 1W, 3M, 6M were 2.06, 1.64, 1.31, 1.44 respectively; and the mean scores for LB were 1.20, 1.02, 0.96, 0.89 respectively. In experimental group, the mean scores for SM count at initial, 1W, 3M, 6M were 1.82, 1.82, 1.37, 1.71 respectively; and the mean scores for LB were 1.50, 1.30, 1.11, 1.18 respectively. There was no significant difference between groups at initial, 1W, 3M and 6M for both SM and LB counts. At one-week follow up, the antibacterial effect of betadine to both SM (p<0.05) and LB(p<0.05) were significantly better than normal saline. However, the antibacterial effect of betadine at three-month and six-month follow up were not as obvious as one-week follow up. To sum up, betadine may have immediate inhibitory effect to cariogenic bacteria at one-week follow up but after three to six months the effect was unobvious.
Contents

Acknowledgments i
Chinese Abstract ii
English Abstract iii
Contents iv-v
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1-8
1.1 Background 1-2
1.2 Aim of the Study 3
1.3 Pilot Study 4-8
Chapter 2 Materials and Methods 9-14
2.1 Sample Collection and Allocation 9
2.2 Study Design 10-11
2.3 Quality Control 12
2.4 Statistical Analysis 13
2.5 Ethical Approval 14
Chapter 3 Results 15-25
3.1 General Data 15-16
3.2 Bacteria Counts in CRT Bacteria Scores 17-21
3.3 Antibacterial Effect 22-23
3.4 Caries Prevalence 24
3.5 Examiner Reproducibility 25
Chapter 4 Discussion 26-33
4.1 General Data 26
4.2 Bacteria Counts in CRT Bacteria Scores 27-28
4.3 Antibacterial effect of betadine 29-30
4.4 Caries Prevalence 31
4.5 Examiner Reproducibility 32
4.6 Limitations 33
Chapter 5 Conclusion 34
Reference 35-37 
List of Tables
Table 1. Results of pilot study 7
Table 2. Sample sizes of similar study 9
Table 3. The general data, dmft, dmfs, DMFT and DMFS of participants in experimental group and control group 15
Table 4. The general data, dmft, dmfs, DMFT and DMFS of participants of males and females 15
Table 5. The general data, dmft, dmfs, DMFT and DMFS of participants received treatment under general anesthesia or at chair-side 16
Table 6. Bacteria count at initial 17
Table 7. Bacteria count at one-week follow up 19
Table 8. Bacteria count at three-month follow up 20
Table 9. Bacteria count at six-month follow up 20
Table 10. Comparison of CRT bacteria scores at initial and one-week follow up 22
Table 11. Comparison of CRT bacteria scores at initial and three-month follow up 22
Table 12. Comparison of CRT bacteria scores at initial and six-month follow up 22
Table 13. Comparison of antibacterial effect through different treatment methods 23
Table 14. Comparison of caries conditions between initial and six-month follow up 24
Table 15. Comparison of caries conditions between initial and six-month follow up of participants recalled periodically 24
Table 16. Inter-examiner and intra-examiner reproducibility 25
Table 17. Comparison of antibacterial effect between present study and similar studies 29




List of Figures
Figure 1. Comparison of initial and one-week follow results of patient A of pilot study under general anesthesia 5
Figure 2. Comparison of initial and 5 minutes after application results of patient D of pilot study under general anesthesia 6
Figure 3. Comparison of initial and 5 minutes after application results of patient F of pilot study at dental chairside 6
Figure 4. Manufactural instructions of CRT bacteria result evaluation. Bacteria scores 1 to 4 from left to right 10
Figure 5. Examples of bacteria counts 0 to 4 (from left to right), Mutans streptococci was shown above Lactobacilli 11
Figure 6. Association of dmft and Mutans streptococci CRT bacteria score 18
Figure 7. Association of dmft and Lactobacilli CRT bacteria score 18
Figure 8. Association of Mutans streptococci CRT bacteria score and Lactobacilli CRT bacteria score 19
Figure 9. The change of bacteria counts 21
1. Bagramian RA, Garcia-Godoy F, Volpe AR. The global increase in dental caries. A pending public health crisis. American journal of dentistry. 2009;22(1):3-8.
2. Anil S, Anand PS. Early Childhood Caries: Prevalence, Risk Factors, and Prevention. Frontiers in pediatrics. 2017;5:157.
3. Horst JA, Ellenikiotis H, Milgrom PL. UCSF Protocol for Caries Arrest Using Silver Diamine Fluoride: Rationale, Indications and Consent. Journal of the California Dental Association. 2016;44(1):16-28.
4. Li Y, Tanner A. Effect of Antimicrobial Interventions on the Oral Microbiota Associated with Early Childhood Caries. Pediatric dentistry. 2015;37(3):226-44.
5. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, et al. Molecular analysis of bacterial species associated with childhood caries. Journal of clinical microbiology. 2002;40(3):1001-9.
6. Neves BG, Stipp RN, Bezerra DDS, Guedes SFF, Rodrigues LKA. Quantitative analysis of biofilm bacteria according to different stages of early childhood caries. Archives of oral biology. 2018;96:155-61.
7. Krzysciak W, Jurczak A, Koscielniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2014;33(4):499-515.
8. Corby PM, Lyons-Weiler J, Bretz WA, Hart TC, Aas JA, Boumenna T, et al. Microbial risk indicators of early childhood caries. Journal of clinical microbiology. 2005;43(11):5753-9.
9. Caufield PW, Schon CN, Saraithong P, Li Y, Argimon S. Oral Lactobacilli and Dental Caries: A Model for Niche Adaptation in Humans. Journal of dental research. 2015;94(9 Suppl):110s-8s.
10. Utter DR, Mark Welch JL, Borisy GG. Individuality, Stability, and Variability of the Plaque Microbiome. Frontiers in microbiology. 2016;7:564.
11. Richards VP, Alvarez AJ, Luce AR, Bedenbaugh M, Mitchell ML, Burne RA, et al. Microbiomes of Site-Specific Dental Plaques from Children with Different Caries Status. Infection and immunity. 2017;85(8).
12. Plonka KA, Pukallus ML, Barnett AG, Walsh LJ, Holcombe TF, Seow WK. A longitudinal study comparing mutans streptococci and lactobacilli colonisation in dentate children aged 6 to 24 months. Caries research. 2012;46(4):385-93.
13. Durani P, Leaper D. Povidone-iodine: use in hand disinfection, skin preparation and antiseptic irrigation. International wound journal. 2008;5(3):376-87.
14. El-Housseiny A, Farsi N. The effectiveness of two antibacterial regimens on salivary mutans streptococci and lactobacilli in children. The Journal of clinical pediatric dentistry. 2005;30(2):145-51.
15. Berkowitz RJ, Koo H, McDermott MP, Whelehan MT, Ragusa P, Kopycka-Kedzierawski DT, et al. Adjunctive chemotherapeutic suppression of mutans streptococci in the setting of severe early childhood caries: an exploratory study. Journal of public health dentistry. 2009;69(3):163-7.
16. 湯雅芬, 李禎祥. MALDI-TOF質譜儀在臨床微生物鑑定的應用. 感染控制雜誌. 2013;23(1):51-2.
17. Tanabe Y, Park JH, Tinanoff N, Turng BF, Lilli H, Minah GE. Comparison of chairside microbiological screening systems and conventional selective media in children with and without visible dental caries. Pediatric dentistry. 2006;28(4):363-8.
18. Wessel SW, Chen Y, Maitra A, van den Heuvel ER, Slomp AM, Busscher HJ, et al. Adhesion forces and composition of planktonic and adhering oral microbiomes. Journal of dental research. 2014;93(1):84-8.
19. Wang BY, Kuramitsu HK. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Applied and environmental microbiology. 2005;71(1):354-62.
20. Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. Journal of bacteriology. 2005;187(21):7193-203.
21. Narayan A, Satyaprasad S, Anandraj S, Ananda SR, Kamath PA, Nandan S. Comparison of efficacy of three chemotherapeutic agents on Streptococcus mutans count in plaque and saliva: A randomized controlled triple blind study. Journal of the Indian Society of Pedodontics and Preventive Dentistry. 2017;35(2):174-80.
22. Xu X, Li JY, Zhou XD, Xie Q, Zhan L, Featherstone JD. Randomized controlled clinical trial on the evaluation of bacteriostatic and cariostatic effects of a novel povidone-iodine/fluoride foam in children with high caries risk. Quintessence international (Berlin, Germany : 1985). 2009;40(3):215-23.
23. 吳翰絢, 劉正芬. Analysis of Caries Development after Comprehensive Dental Treatment under General Anesthesia. 臺灣兒童牙醫學雜誌. 2019;19(3):89-95.
24. Wan AK, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI. A longitudinal study of Streptococcus mutans colonization in infants after tooth eruption. Journal of dental research. 2003;82(7):504-8.
25. Divaris K, Shungin D, Rodriguez-Cortes A, Basta PV, Roach J, Cho H, et al. The Supragingival Biofilm in Early Childhood Caries: Clinical and Laboratory Protocols and Bioinformatics Pipelines Supporting Metagenomics, Metatranscriptomics, and Metabolomics Studies of the Oral Microbiome. Methods in molecular biology (Clifton, NJ). 2019;1922:525-48.
26. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nature reviews Microbiology. 2018;16(12):745-59.
27. Mira A, Simon-Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. Journal of clinical periodontology. 2017;44 Suppl 18:S23-s38.
28. Tanner ACR, Kressirer CA, Rothmiller S, Johansson I, Chalmers NI. The Caries Microbiome: Implications for Reversing Dysbiosis. Advances in dental research. 2018;29(1):78-85.
29. Hajishengallis E, Parsaei Y, Klein MI, Koo H. Advances in the microbial etiology and pathogenesis of early childhood caries. Molecular oral microbiology. 2017;32(1):24-34.
30. Wu CC, Lin CT, Wu CY, Peng WS, Lee MJ, Tsai YC. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation. Molecular oral microbiology. 2015;30(1):16-26.
31. Zhou Q, Qin X, Qin M, Ge L. Genotypic diversity of Streptococcus mutans and Streptococcus sobrinus in 3-4-year-old children with severe caries or without caries. International journal of paediatric dentistry. 2011;21(6):422-31.
32. Fujiwara T, Sasada E, Mima N, Ooshima T. Caries prevalence and salivary mutans streptococci in 0-2-year-old children of Japan. Community dentistry and oral epidemiology. 1991;19(3):151-4.
33. Kohler B, Bjarnason S, Care R, Mackevica I, Rence I. Mutans streptococci and dental caries prevalence in a group of Latvian preschool children. European journal of oral sciences. 1995;103(4):264-6.
34. Neeraja R, Anantharaj A, Praveen P, Karthik V, Vinitha M. The effect of povidone-iodine and chlorhexidine mouth rinses on plaque Streptococcus mutans count in 6- to 12-year-old school children: an in vivo study. Journal of the Indian Society of Pedodontics and Preventive Dentistry. 2008;26 Suppl 1:S14-8.
35. Dogan AA, Adiloglu AK, Onal S, Cetin ES, Polat E, Uskun E, et al. Short-term relative antibacterial effect of octenidine dihydrochloride on the oral microflora in orthodontically treated patients. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2008;12(6):e19-25.
36. Macias JH, Arreguin V, Munoz JM, Alvarez JA, Mosqueda JL, Macias AE. Chlorhexidine is a better antiseptic than povidone iodine and sodium hypochlorite because of its substantive effect. American journal of infection control. 2013;41(7):634-7.
37. Reilly C, Goettl M, Steinmetz M, Nikrad J, Jones RS. Short-term effects of povidone iodine and sodium fluoride therapy on plaque levels and microbiome diversity. Oral diseases. 2016;22(2):155-61.
38. Tut OK, Milgrom PM. Topical iodine and fluoride varnish combined is more effective than fluoride varnish alone for protecting erupting first permanent molars: a retrospective cohort study. Journal of public health dentistry. 2010;70(3):249-52.
電子全文 電子全文(網際網路公開日期:20250114)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top