|
1.Houthoofd, K., et al., Dietary restriction in the nematode Caenorhabditis elegans. Interdiscip Top Gerontol, 2007. 35: p. 98-114. 2.Jiang, J.C., et al., An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J, 2000. 14(14): p. 2135-7. 3.Katewa, S.D. and P. Kapahi, Dietary restriction and aging, 2009. Aging Cell, 2010. 9(2): p. 105-12. 4.Lane, M.A., et al., Caloric restriction and aging in primates: Relevance to humans and possible CR mimetics. Microsc Res Tech, 2002. 59(4): p. 335-8. 5.Lin, S.J., P.A. Defossez, and L. Guarente, Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 2000. 289(5487): p. 2126-8. 6.Partridge, L., M.D. Piper, and W. Mair, Dietary restriction in Drosophila. Mech Ageing Dev, 2005. 126(9): p. 938-50. 7.Masoro, E.J., Caloric restriction and aging: an update. Exp Gerontol, 2000. 35(3): p. 299-305. 8.Masoro, E.J., Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ, 2003. 2003(8): p. RE2. 9.Giannakou, M.E. and L. Partridge, Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci, 2007. 32(4): p. 180-8. 10.Altintas, O., S. Park, and S.J. Lee, The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep, 2016. 49(2): p. 81-92. 11.Kenyon, C.J., The genetics of ageing. Nature, 2010. 464(7288): p. 504-12. 12.van Heemst, D., Insulin, IGF-1 and longevity. Aging Dis, 2010. 1(2): p. 147-57. 13.Hua, Q.X., et al., A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Genes Dev, 2003. 17(7): p. 826-31. 14.Cohen, E. and A. Dillin, The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci, 2008. 9(10): p. 759-67. 15.Houthoofd, K., et al., Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol, 2003. 38(9): p. 947-54. 16.Lakowski, B. and S. Hekimi, The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13091-6. 17.Harrison, D.E., et al., Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009. 460(7253): p. 392-5. 18.Jia, K., D. Chen, and D.L. Riddle, The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development, 2004. 131(16): p. 3897-906. 19.Kapahi, P., et al., Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol, 2004. 14(10): p. 885-90. 20.Vellai, T., et al., Genetics: influence of TOR kinase on lifespan in C. elegans. Nature, 2003. 426(6967): p. 620. 21.Zid, B.M., et al., 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell, 2009. 139(1): p. 149-60. 22.Um, S.H., et al., Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature, 2004. 431(7005): p. 200-5. 23.Hansen, M., et al., A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet, 2008. 4(2): p. e24. 24.Greer, E.L., et al., An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol, 2007. 17(19): p. 1646-56. 25.Stenesen, D., et al., Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab, 2013. 17(1): p. 101-12. 26.Hansen, M., et al., New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet, 2005. 1(1): p. 119-28. 27.Chiang, P.K., et al., S-Adenosylmethionine and methylation. FASEB J, 1996. 10(4): p. 471-80. 28.Vance, D.E., Phospholipid methylation in mammals: from biochemistry to physiological function. Biochim Biophys Acta, 2014. 1838(6): p. 1477-87. 29.Walker, A.K., 1-Carbon Cycle Metabolites Methylate Their Way to Fatty Liver. Trends Endocrinol Metab, 2017. 28(1): p. 63-72. 30.Katoh, Y., et al., Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell, 2011. 41(5): p. 554-66. 31.Reytor, E., et al., Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J, 2009. 23(10): p. 3347-60. 32.Gil, B., et al., Differential expression pattern of S-adenosylmethionine synthetase isoenzymes during rat liver development. Hepatology, 1996. 24(4): p. 876-81. 33.Martinez-Chantar, M.L., et al., Methionine adenosyltransferase II beta subunit gene expression provides a proliferative advantage in human hepatoma. Gastroenterology, 2003. 124(4): p. 940-8. 34.Alvarez, L., et al., Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochem J, 1993. 293 ( Pt 2): p. 481-6. 35.Kotb, M., et al., Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends Genet, 1997. 13(2): p. 51-2. 36.Walker, A.K., et al., A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell, 2011. 147(4): p. 840-52. 37.Li, Y., et al., Contribution of sams-1 and pmt-1 to lipid homoeostasis in adult Caenorhabditis elegans. J Biochem, 2011. 149(5): p. 529-38. 38.Ding, W., et al., s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways. Cell Metab, 2015. 22(4): p. 633-45. 39.Rasmussen, E.B. and J.T. Lis, In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci U S A, 1993. 90(17): p. 7923-7. 40.Ramanathan, A., G.B. Robb, and S.H. Chan, mRNA capping: biological functions and applications. Nucleic Acids Res, 2016. 44(16): p. 7511-26. 41.Cougot, N., et al., 'Cap-tabolism'. Trends Biochem Sci, 2004. 29(8): p. 436-44. 42.Chang, J.H., et al., Dxo1 is a new type of eukaryotic enzyme with both decapping and 5'-3' exoribonuclease activity. Nat Struct Mol Biol, 2012. 19(10): p. 1011-7. 43.Jiao, X., et al., A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell, 2013. 50(1): p. 104-15. 44.Will, C.L. and R. Luhrmann, Spliceosome structure and function. Cold Spring Harb Perspect Biol, 2011. 3(7). 45.Beyer, A.L. and Y.N. Osheim, Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev, 1988. 2(6): p. 754-65. 46.Colgan, D.F. and J.L. Manley, Mechanism and regulation of mRNA polyadenylation. Genes Dev, 1997. 11(21): p. 2755-66. 47.Liu, J., et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol, 2014. 10(2): p. 93-5. 48.Schwartz, S., et al., High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell, 2013. 155(6): p. 1409-21. 49.Hongay, C.F. and T.L. Orr-Weaver, Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci U S A, 2011. 108(36): p. 14855-60. 50.Zhong, S., et al., MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell, 2008. 20(5): p. 1278-88. 51.Henras, A.K., et al., An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA, 2015. 6(2): p. 225-42. 52.Xue, S. and M. Barna, Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol, 2012. 13(6): p. 355-69. 53.Decatur, W.A. and M.J. Fournier, RNA-guided nucleotide modification of ribosomal and other RNAs. J Biol Chem, 2003. 278(2): p. 695-8. 54.Watkins, N.J. and M.T. Bohnsack, The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA, 2012. 3(3): p. 397-414. 55.Tollervey, D. and T. Kiss, Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol, 1997. 9(3): p. 337-42. 56.Henras, A.K., et al., The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci, 2008. 65(15): p. 2334-59. 57.Lapinaite, A., et al., The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature, 2013. 502(7472): p. 519-23. 58.Wang, H., et al., Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J, 2000. 19(3): p. 317-23. 59.Kiss, T., Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J, 2001. 20(14): p. 3617-22. 60.Phizicky, E.M. and A.K. Hopper, tRNA biology charges to the front. Genes Dev, 2010. 24(17): p. 1832-60. 61.Kirchner, S. and Z. Ignatova, Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet, 2015. 16(2): p. 98-112. 62.Shin, B.S., et al., Initiation factor eIF2gamma promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Nat Struct Mol Biol, 2011. 18(11): p. 1227-34. 63.Gerber, A.P. and W. Keller, An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science, 1999. 286(5442): p. 1146-9. 64.Anderson, J., et al., The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev, 1998. 12(23): p. 3650-62. 65.Wang, X. and C. He, Dynamic RNA modifications in posttranscriptional regulation. Mol Cell, 2014. 56(1): p. 5-12. 66.Yuan, Y., et al., Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans. J Biol Chem, 2012. 287(37): p. 31414-26. 67.Hansen, M., et al., Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 2007. 6(1): p. 95-110. 68.Copes, N., et al., Metabolome and proteome changes with aging in Caenorhabditis elegans. Exp Gerontol, 2015. 72: p. 67-84. 69.Curran, S.P. and G. Ruvkun, Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet, 2007. 3(4): p. e56. 70.Pan, K.Z., et al., Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell, 2007. 6(1): p. 111-9. 71.Ching, T.T., et al., drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans. Aging Cell, 2010. 9(4): p. 545-57. 72.Fabrega, C., et al., Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell, 2004. 13(1): p. 77-89. 73.Tiku, V., et al., Small nucleoli are a cellular hallmark of longevity. Nat Commun, 2017. 8: p. 16083.
|