跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俞君
研究生(外文):Yu-Jyun Liou
論文名稱:線蟲mRNA端帽甲基轉移酶於調控飲食限制所引起的長壽現象的作用機制
論文名稱(外文):The role of mRNA cap methyltransferase in the regulation of dietary restriction-induced longevity in C. elegans
指導教授:許翱麟
指導教授(外文):Ao-Lin Hsu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:52
中文關鍵詞:飲食限制長壽線蟲信使核糖核酸
外文關鍵詞:Dietary restrictionlongevityC.elegansmRNASAMS-1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
飲食限制(Dietary restriction, DR)在許多物種中皆被證實可以延長壽命並延緩老化。在先前以線蟲做為模式生物的研究中,發現sams-1基因在DR所造成壽命延長中扮演重要的腳色。sams-1所解碼出的蛋白質,能將ATP與甲硫胺酸結合產生甲基提供者SAM。在DR時,原本累積在腸道細胞核內的SAMS-1會出核,而SAMS-1在腸道細胞的核質比與壽命呈現負相關。為了探討sams-1是如何影響下游機制,進而造成壽命的延長,先前實驗室針對甲基轉移酶進行RNAi篩選,發現有部分RNA甲基轉移酶被抑制後,線蟲壽命延長。這些RNA甲基轉移酶的功能主要在幫助RNA進行加工、成熟。同時,在DR及抑制sams-1後,已知蛋白質合成會減少,且會使壽命延長,因此我們假設DR可能會減少RNA的成熟,造成蛋白質合成減少,最終使壽命延長。
而我主要針對mRNA的部分進行研究。在甲基轉移酶RNAi篩選中,找到使mRNA端帽甲基化的甲基轉移酶- tag-72。在先前的研究中已知tag-72的確在DR的下游。我利用帶有TAG-72鑲嵌紅螢光的線蟲株進行拍照,發現TAG-72主要表現在細胞核的核質中。接著利用dot blot實驗,我發現抑制tag-72後,的確可以使m7G-cap mRNA含量減少,由此確認tag-72的確有m7G-cap mRNA甲基轉移酶的功能。接著在SAMS-1減少及進行DR的情況下,也看到m7G-cap mRNA含量減少的現象。為了確認影響mRNA端帽甲基化後,是否也會影響mRNA後續加工。我們利用Fluorescence in situ hybridization (FISH)的方式觀察poly A mRNA在線蟲中的分布。結果發現在TAG-72減少、SAMS-1減少及DR的情況下,線蟲腸道細胞核核質的poly A mRNA都有減少。以上實驗證實了DR後,細胞核內的SAMS-1減少,減少了mRNA端帽的甲基化,也影響後續poly A加工,可能會造成被送出細胞核的成熟mRNA降低,使蛋白質生成下降,最終造成壽命延長。
Dietary restriction (DR) is the most robust intervention known to extend lifespan in a variety of species. Previous research showed that sams-1, which encodes the S-adenosyl methionine synthetase-1 (SAMS-1), mediates DR-induced longevity in Caenorhabditis elegans. SAMS-1 catalyzes the formation of a major cellular methyl group donor, S-adenosylmethionine (SAM), from methionine and ATP. The subcellular distribution of SAMS-1 depends on the levels of food consumption. The subcellular re-localization of SAMS-1 is required for DR-induced longevity. In order to identify the downstream effectors of SAMS-1 that may play roles in longevity regulation, we have previously performed a methyltransferase RNAi screening. From this screen, we have identified several candidate RNA methyltransferases, when knocked down, extends lifespan. Moreover, it has been shown that DR or sams-1 knockdown decreases protein synthesis in C. elegans and extends lifespan. To sum up, we propose that, in DR animals, decrease in SAMS-1 nuclear accumulation results in less SAM available for RNA methyltransferases, which in turn leads to reduced protein synthesis and extended lifespan.
My project focused on tag-72, a putative m7G-cap mRNA methyltransferase. Our previous studies suggest that tag-72 may be involved in DR-induced longevity. Thus, we aimed to examine the role of tag-72 in DR-induced longevity. We found that TAG-72 is mainly localized in the intestinal nucleoplasm. The level of m7G-cap mRNA decreased upon tag-72 RNAi, which confirms the function of TAG-72 as m7G-cap mRNA methyltransferase. Interestingly, there is also a reduced level of m7G-cap mRNA under DR or sams-1 inhibition. Next, we would like to know the effects of m7G-cap reduction on the mRNA processing. We found that the level of polyA mRNA in intestinal nucleoplasm is reduced upon tag-72 mutation, sams-1 RNAi or DR. Overall, we conclude that DR might attenuate SAM-dependent mRNA cap methylation, and subsequently reduce polyA processing. This may extend lifespan by lowering the level of mature mRNA and protein synthesis.
目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VI
緒論 1
一、飲食限制(Dietary restriction, DR) 1
二、在飲食限制下關鍵基因 sams-1 3
三、RNA的成熟 4
四、生物體內蛋白質的恆定與壽命關係 7
研究目的 8
材料與方法 9
線蟲品系(strain) 9
線蟲培養(maintaining) 9
Escherichia coli OP50培養 10
Bleaching for eggs 10
AL / Starvation處理 11
RNA interference (RNAi)處理 11
線蟲壽命觀察 (lifespan) 12
線蟲中TAG-72分佈觀察 (TAG-72 distribution assay) 12
Fluorescence in situ hybridization (FISH) 13
Dot Blot 15
RNA isolation 17
Reverse Transcription (RT) 17
Quantitative Real-Time PCR 18
結果 19
1.觀察線蟲中TAG-72的分布及確認TAG-72的功能 20
2.飲食限制及SAMS-1的表現影響整體m7G mRNA含量 21
3.飲食限制及影響SAMS-1或TAG-72的表現改變腸道細胞核核質中poly A mRNA的含量 22
4.rRNA的成熟影響腸道細胞核核仁的大小 23
討論 25
圖表 28
參考文獻 48

圖目錄
Figure 1. RNAi screen下會延長壽命的甲基轉移酶……………………………….28
Figure 2. N2、EQ373、eat-2、EQ1123、EQ1124及EQ1125壽命觀察結果…...29
Figure 3. TAG-72在線蟲體內的分布………………………………………………30
Figure 4. N2處理tag-72 RNAi後對於整體m7G cap mRNA的影響…………….32
Figure 5. N2及VC1185整體m7G cap mRNA的差異…………………………….33
Figure 6. N2處理sams-1 RNAi後對於整體m7G cap mRNA的影響……………34
Figure 7. N2及EQ153整體m7G cap mRNA的差異……………………………...35
Figure 8. N2在正常飲食及飢餓2HR後整體m7G cap mRNA的差異…………...36
Figure 9. N2及AD1116整體m7G cap mRNA的差異…………………………….37
Figure 10. N2、VC1185、EQ153的poly A mRNA分布及定量結果…………….38
Figure 11. N2處理sams-1 RNAi後的poly A mRNA分布及定量結果…………..40
Figure 12. N2在正常飲食及飢餓2HR後的poly A mRNA分布及定量結果……41
Figure 13. N2及AD1116的腸道細胞核核仁大小定量結果……………………...42
Figure 14. N2及AD1116的腸道細胞核核仁大小定量結果………...……………43
Figure 15. N2、VC1185、EQ153的腸道細胞核核仁大小定量結果……………..44
Figure 16. N2處理nol-5、T07A9.8、trm-1 RNAi後腸道細胞核核仁大小定量結果……………………………………………………………………………………..45

表目錄
表一. QPCR primer表……………………………………………………………….46
表二. FISH分析及NP/C ratio統計結果總表……………………………………...46
表三. FISH分析及細胞核核仁大小統計結果總表………………………………..47
1.Houthoofd, K., et al., Dietary restriction in the nematode Caenorhabditis elegans. Interdiscip Top Gerontol, 2007. 35: p. 98-114.
2.Jiang, J.C., et al., An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J, 2000. 14(14): p. 2135-7.
3.Katewa, S.D. and P. Kapahi, Dietary restriction and aging, 2009. Aging Cell, 2010. 9(2): p. 105-12.
4.Lane, M.A., et al., Caloric restriction and aging in primates: Relevance to humans and possible CR mimetics. Microsc Res Tech, 2002. 59(4): p. 335-8.
5.Lin, S.J., P.A. Defossez, and L. Guarente, Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 2000. 289(5487): p. 2126-8.
6.Partridge, L., M.D. Piper, and W. Mair, Dietary restriction in Drosophila. Mech Ageing Dev, 2005. 126(9): p. 938-50.
7.Masoro, E.J., Caloric restriction and aging: an update. Exp Gerontol, 2000. 35(3): p. 299-305.
8.Masoro, E.J., Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ, 2003. 2003(8): p. RE2.
9.Giannakou, M.E. and L. Partridge, Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci, 2007. 32(4): p. 180-8.
10.Altintas, O., S. Park, and S.J. Lee, The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep, 2016. 49(2): p. 81-92.
11.Kenyon, C.J., The genetics of ageing. Nature, 2010. 464(7288): p. 504-12.
12.van Heemst, D., Insulin, IGF-1 and longevity. Aging Dis, 2010. 1(2): p. 147-57.
13.Hua, Q.X., et al., A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Genes Dev, 2003. 17(7): p. 826-31.
14.Cohen, E. and A. Dillin, The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci, 2008. 9(10): p. 759-67.
15.Houthoofd, K., et al., Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol, 2003. 38(9): p. 947-54.
16.Lakowski, B. and S. Hekimi, The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13091-6.
17.Harrison, D.E., et al., Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009. 460(7253): p. 392-5.
18.Jia, K., D. Chen, and D.L. Riddle, The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development, 2004. 131(16): p. 3897-906.
19.Kapahi, P., et al., Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol, 2004. 14(10): p. 885-90.
20.Vellai, T., et al., Genetics: influence of TOR kinase on lifespan in C. elegans. Nature, 2003. 426(6967): p. 620.
21.Zid, B.M., et al., 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell, 2009. 139(1): p. 149-60.
22.Um, S.H., et al., Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature, 2004. 431(7005): p. 200-5.
23.Hansen, M., et al., A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet, 2008. 4(2): p. e24.
24.Greer, E.L., et al., An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol, 2007. 17(19): p. 1646-56.
25.Stenesen, D., et al., Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab, 2013. 17(1): p. 101-12.
26.Hansen, M., et al., New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet, 2005. 1(1): p. 119-28.
27.Chiang, P.K., et al., S-Adenosylmethionine and methylation. FASEB J, 1996. 10(4): p. 471-80.
28.Vance, D.E., Phospholipid methylation in mammals: from biochemistry to physiological function. Biochim Biophys Acta, 2014. 1838(6): p. 1477-87.
29.Walker, A.K., 1-Carbon Cycle Metabolites Methylate Their Way to Fatty Liver. Trends Endocrinol Metab, 2017. 28(1): p. 63-72.
30.Katoh, Y., et al., Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell, 2011. 41(5): p. 554-66.
31.Reytor, E., et al., Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J, 2009. 23(10): p. 3347-60.
32.Gil, B., et al., Differential expression pattern of S-adenosylmethionine synthetase isoenzymes during rat liver development. Hepatology, 1996. 24(4): p. 876-81.
33.Martinez-Chantar, M.L., et al., Methionine adenosyltransferase II beta subunit gene expression provides a proliferative advantage in human hepatoma. Gastroenterology, 2003. 124(4): p. 940-8.
34.Alvarez, L., et al., Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochem J, 1993. 293 ( Pt 2): p. 481-6.
35.Kotb, M., et al., Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends Genet, 1997. 13(2): p. 51-2.
36.Walker, A.K., et al., A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell, 2011. 147(4): p. 840-52.
37.Li, Y., et al., Contribution of sams-1 and pmt-1 to lipid homoeostasis in adult Caenorhabditis elegans. J Biochem, 2011. 149(5): p. 529-38.
38.Ding, W., et al., s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways. Cell Metab, 2015. 22(4): p. 633-45.
39.Rasmussen, E.B. and J.T. Lis, In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci U S A, 1993. 90(17): p. 7923-7.
40.Ramanathan, A., G.B. Robb, and S.H. Chan, mRNA capping: biological functions and applications. Nucleic Acids Res, 2016. 44(16): p. 7511-26.
41.Cougot, N., et al., 'Cap-tabolism'. Trends Biochem Sci, 2004. 29(8): p. 436-44.
42.Chang, J.H., et al., Dxo1 is a new type of eukaryotic enzyme with both decapping and 5'-3' exoribonuclease activity. Nat Struct Mol Biol, 2012. 19(10): p. 1011-7.
43.Jiao, X., et al., A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell, 2013. 50(1): p. 104-15.
44.Will, C.L. and R. Luhrmann, Spliceosome structure and function. Cold Spring Harb Perspect Biol, 2011. 3(7).
45.Beyer, A.L. and Y.N. Osheim, Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev, 1988. 2(6): p. 754-65.
46.Colgan, D.F. and J.L. Manley, Mechanism and regulation of mRNA polyadenylation. Genes Dev, 1997. 11(21): p. 2755-66.
47.Liu, J., et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol, 2014. 10(2): p. 93-5.
48.Schwartz, S., et al., High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell, 2013. 155(6): p. 1409-21.
49.Hongay, C.F. and T.L. Orr-Weaver, Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci U S A, 2011. 108(36): p. 14855-60.
50.Zhong, S., et al., MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell, 2008. 20(5): p. 1278-88.
51.Henras, A.K., et al., An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA, 2015. 6(2): p. 225-42.
52.Xue, S. and M. Barna, Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol, 2012. 13(6): p. 355-69.
53.Decatur, W.A. and M.J. Fournier, RNA-guided nucleotide modification of ribosomal and other RNAs. J Biol Chem, 2003. 278(2): p. 695-8.
54.Watkins, N.J. and M.T. Bohnsack, The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA, 2012. 3(3): p. 397-414.
55.Tollervey, D. and T. Kiss, Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol, 1997. 9(3): p. 337-42.
56.Henras, A.K., et al., The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci, 2008. 65(15): p. 2334-59.
57.Lapinaite, A., et al., The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature, 2013. 502(7472): p. 519-23.
58.Wang, H., et al., Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J, 2000. 19(3): p. 317-23.
59.Kiss, T., Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J, 2001. 20(14): p. 3617-22.
60.Phizicky, E.M. and A.K. Hopper, tRNA biology charges to the front. Genes Dev, 2010. 24(17): p. 1832-60.
61.Kirchner, S. and Z. Ignatova, Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet, 2015. 16(2): p. 98-112.
62.Shin, B.S., et al., Initiation factor eIF2gamma promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Nat Struct Mol Biol, 2011. 18(11): p. 1227-34.
63.Gerber, A.P. and W. Keller, An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science, 1999. 286(5442): p. 1146-9.
64.Anderson, J., et al., The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev, 1998. 12(23): p. 3650-62.
65.Wang, X. and C. He, Dynamic RNA modifications in posttranscriptional regulation. Mol Cell, 2014. 56(1): p. 5-12.
66.Yuan, Y., et al., Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans. J Biol Chem, 2012. 287(37): p. 31414-26.
67.Hansen, M., et al., Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 2007. 6(1): p. 95-110.
68.Copes, N., et al., Metabolome and proteome changes with aging in Caenorhabditis elegans. Exp Gerontol, 2015. 72: p. 67-84.
69.Curran, S.P. and G. Ruvkun, Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet, 2007. 3(4): p. e56.
70.Pan, K.Z., et al., Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell, 2007. 6(1): p. 111-9.
71.Ching, T.T., et al., drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans. Aging Cell, 2010. 9(4): p. 545-57.
72.Fabrega, C., et al., Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell, 2004. 13(1): p. 77-89.
73.Tiku, V., et al., Small nucleoli are a cellular hallmark of longevity. Nat Commun, 2017. 8: p. 16083.
電子全文 電子全文(網際網路公開日期:20250110)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊