|
Boets, E., Gomand, S. V., Deroover, L., Preston, T., Vermeulen, K., De Preter, V., . . . Verbeke, K. A. (2017). Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol, 595(2), 541-555. doi:10.1113/jp272613 Cigarran Guldris, S., Gonzalez Parra, E., & Cases Amenos, A. (2017). Gut microbiota in chronic kidney disease. Nefrologia, 37(1), 9-19. doi:10.1016/j.nefro.2016.05.008 De Smet, R., David, F., Sandra, P., Van Kaer, J., Lesaffer, G., Dhondt, A., . . . Vanholder, R. (1998). A sensitive HPLC method for the quantification of free and total p-cresol in patients with chronic renal failure. Clin Chim Acta, 278(1), 1-21. Den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 54(9), 2325-2340. doi:10.1194/jlr.R036012 Dou, L., Sallee, M., Cerini, C., Poitevin, S., Gondouin, B., Jourde-Chiche, N., . . . Burtey, S. (2015). The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol, 26(4), 876-887. doi:10.1681/asn.2013121283 Edamatsu, T., Fujieda, A., Ezawa, A., & Itoh, Y. (2014). Classification of Five Uremic Solutes according to Their Effects on Renal Tubular Cells. International Journal of Nephrology, 2014, 10. Retrieved from http://dx.doi.org/10.1155/2014/512178. doi:10.1155/2014/512178 Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. doi:10.1093/bioinformatics/btq461 Einheber, A., & Carter, D. (1966). The role of the microbial flora in uremia. I. Survival times of germfree, limited-flora, and conventionalized rats after bilateral nephrectomy and fasting. J Exp Med, 123(2), 239-250. doi:10.1084/jem.123.2.239 A framework for human microbiome research. (2012). Nature, 486(7402), 215-221. doi:10.1038/nature11209 Gao, X., Pujos-Guillot, E., Martin, J. F., Galan, P., Juste, C., Jia, W., & Sebedio, J. L. (2009). Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. Anal Biochem, 393(2), 163-175. doi:10.1016/j.ab.2009.06.036 Girard-pipau, F., Pompei, A., Nano, J. L., Boquet, X., & Rampal, P. (2002). Intestinal Microflora, Short Chain and Cellular Fatty Acids, Influence of a Probiotic Saccharomyces boulardii. Microbial Ecology in Health and Disease, 14(4), 221-228. Retrieved from https://doi.org/10.1080/08910600310002109. doi:10.1080/08910600310002109 Gratton, J., Phetcharaburanin, J., Mullish, B. H., Williams, H. R. T., Thursz, M., Nicholson, J. K., . . . Li, J. V. (2016). Optimized Sample Handling Strategy for Metabolic Profiling of Human Feces. Analytical Chemistry, 88(9), 4661-4668. Retrieved from https://doi.org/10.1021/acs.analchem.5b04159. doi:10.1021/acs.analchem.5b04159 Horowitz, J. D., & Heresztyn, T. (2007). An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B Analyt Technol Biomed Life Sci, 851(1-2), 42-50. doi:10.1016/j.jchromb.2006.09.023 Hur, E., Gungor, O., Bozkurt, D., Bozgul, S., Dusunur, F., Caliskan, H., . . . Duman, S. (2012). Trimethylaminuria (fish malodour syndrome) in chronic renal failure. Hippokratia, 16(1), 83-85. Ishihara, K., Katsutani, N., & Aoki, T. (2006). A metabonomics study of the hepatotoxicants galactosamine, methylene dianiline and clofibrate in rats. Basic Clin Pharmacol Toxicol, 99(3), 251-260. doi:10.1111/j.1742-7843.2006.pto_455.x Leiva-Gea, I., Sánchez-Alcoholado, L., Martín-Tejedor, B., Castellano-Castillo, D., Moreno-Indias, I., Urda-Cardona, A., . . . Queipo-Ortuño, M. I. (2018). Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study. Diabetes Care, 41(11), 2385-2395. Retrieved from https://care.diabetesjournals.org/content/diacare/41/11/2385.full.pdf. doi:10.2337/dc18-0253 Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 102(31), 11070-11075. doi:10.1073/pnas.0504978102 Martinez, A. W., Recht, N. S., Hostetter, T. H., & Meyer, T. W. (2005). Removal of P-cresol sulfate by hemodialysis. J Am Soc Nephrol, 16(11), 3430-3436. doi:10.1681/asn.2005030310 Meijers, B. K., Van Kerckhoven, S., Verbeke, K., Dehaen, W., Vanrenterghem, Y., Hoylaerts, M. F., & Evenepoel, P. (2009). The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis, 54(5), 891-901. doi:10.1053/j.ajkd.2009.04.022 Melamed, M. L., Plantinga, L., Shafi, T., Parekh, R., Meyer, T. W., Hostetter, T. H., . . . Powe, N. R. (2013). Retained organic solutes, patient characteristics and all-cause and cardiovascular mortality in hemodialysis: results from the retained organic solutes and clinical outcomes (ROSCO) investigators. BMC Nephrol, 14, 134. doi:10.1186/1471-2369-14-134 Mishima, E., Fukuda, S., Mukawa, C., Yuri, A., Kanemitsu, Y., Matsumoto, Y., . . . Abe, T. (2017). Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int, 92(3), 634-645. doi:10.1016/j.kint.2017.02.011 Motojima, M., Hosokawa, A., Yamato, H., Muraki, T., & Yoshioka, T. (2002). Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br J Pharmacol, 135(2), 555-563. doi:10.1038/sj.bjp.0704482 Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L., . . . Gordon, J. I. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332(6032), 970-974. doi:10.1126/science.1198719 Owada, S., Goto, S., Bannai, K., Hayashi, H., Nishijima, F., & Niwa, T. (2008). Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am J Nephrol, 28(3), 446-454. doi:10.1159/000112823 Penders, J., Thijs, C., van den Brandt, P. A., Kummeling, I., Snijders, B., Stelma, F., . . . Stobberingh, E. E. (2007). Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut, 56(5), 661-667. doi:10.1136/gut.2006.100164 Qi, W. S. (2019). 1138 – Short-Chain Fatty Acids Postpone the Progression of Chronic Kidney Disease Via Decreasing the Microbial Production of Tmao. Gastroenterology, 156(6), S-241. Retrieved from https://doi.org/10.1016/S0016-5085(19)37405-0. doi:10.1016/S0016-5085(19)37405-0 Ramezani, A., Massy, Z. A., Meijers, B., Evenepoel, P., Vanholder, R., & Raj, D. S. (2016). Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis, 67(3), 483-498. doi:10.1053/j.ajkd.2015.09.027 Ribeiro, A. M. L., Penz, A. M., Jr., Belay, T. K., & Teeter, R. G. (2001). Comparison of Different Drying Techniques for Nitrogen Analysis of Poultry Excreta, Feces, and Tissue. The Journal of Applied Poultry Research, 10(1), 21-23. Retrieved from https://doi.org/10.1093/japr/10.1.21. doi:10.1093/japr/10.1.21 Saito, K., Fujigaki, S., Heyes, M. P., Shibata, K., Takemura, M., Fujii, H., . . . Seishima, M. (2000). Mechanism of increases in l-kynurenine and quinolinic acid in renal insufficiency. American Journal of Physiology-Renal Physiology, 279(3), F565-F572. Retrieved from https://www.physiology.org/doi/abs/10.1152/ajprenal.2000.279.3.F565. doi:10.1152/ajprenal.2000.279.3.F565 Saito, Y., Sato, T., Nomoto, K., & Tsuji, H. (2018). Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol, 94(9). doi:10.1093/femsec/fiy125 Sallee, M., Dou, L., Cerini, C., Poitevin, S., Brunet, P., & Burtey, S. (2014). The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel), 6(3), 934-949. doi:10.3390/toxins6030934 Spustova, V., Cernay, P., & Golier, I. (1989). Inhibition of glucose utilization in uremia by hippurate: liquid chromatographic isolation and mass spectrometric and nuclear magnetic resonance spectroscopic identification. J Chromatogr, 490(1), 186-192. doi:10.1016/s0378-4347(00)82773-5 Sun, C. Y., Hsu, H. H., & Wu, M. S. (2013). p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrol Dial Transplant, 28(1), 70-78. doi:10.1093/ndt/gfs133 Tang, W. H., Wang, Z., Kennedy, D. J., Wu, Y., Buffa, J. A., Agatisa-Boyle, B., . . . Hazen, S. L. (2015). Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res, 116(3), 448-455. doi:10.1161/circresaha.116.305360 Tremaroli, V., & Backhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242-249. doi:10.1038/nature11552 Uremia: Biochemistry, Pathogenesis and Treatment. (1962). Proceedings of the Royal Society of Medicine, 55(8), 723-724. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896792/. Vanholder, R., De Smet, R., Glorieux, G., Argiles, A., Baurmeister, U., Brunet, P., . . . Zidek, W. (2003). Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int, 63(5), 1934-1943. doi:10.1046/j.1523-1755.2003.00924.x Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., DuGar, B., . . . Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57. Retrieved from https://doi.org/10.1038/nature09922. doi:10.1038/nature09922 Wong, J. M., de Souza, R., Kendall, C. W., Emam, A., & Jenkins, D. J. (2006). Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol, 40(3), 235-243. Wu, I. W., Hsu, K. H., Lee, C. C., Sun, C. Y., Hsu, H. J., Tsai, C. J., . . . Wu, M. S. (2011). p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant, 26(3), 938-947. doi:10.1093/ndt/gfq580 Yoshifuji, A., Wakino, S., Irie, J., Tajima, T., Hasegawa, K., Kanda, T., . . . Itoh, H. (2016). Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant, 31(3), 401-412. doi:10.1093/ndt/gfv353 Zheng, X., Qiu, Y., Zhong, W., Baxter, S., Su, M., Li, Q., . . . Jia, W. (2013). A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics, 9(4), 818-827. doi:10.1007/s11306-013-0500-6
|