|
1. R. Y. Tsien, "Imagining imaging's future," Nat Rev Mol Cell Biol Suppl, SS16-21 (2003). 2. R. Erni, M. D. Rossell, C. Kisielowski, and U. Dahmen, "Atomic-Resolution Imaging with a Sub-50-pm Electron Probe," Physical Review Letters 102, 096101 (2009). 3. D. B. Scott, "Microscopic studies of dental tissues. II. Optical microscopy of tooth surfaces," Oral Surgery, Oral Medicine, Oral Pathology 5, 638-645 (1952). 4. T. Wilson, and C. Sheppard, Theory and practice of scanning optical microscopy (Academic Press London, 1984). 5. J. B. Pawley, "Fundamental limits in confocal microscopy," in Handbook of biological confocal microscopy(Springer, 2006), pp. 20-42. 6. C. Albrecht, "Joseph R. Lakowicz: Principles of fluorescence spectroscopy," Analytical and Bioanalytical chemistry 390, 1223-1224 (2008). 7. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, "Green fluorescent protein as a marker for gene expression," Science 263, 802-805 (1994). 8. R. Y. Tsien, "The green fluorescent protein," (Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA, 1998). 9. X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," science 307, 538-544 (2005). 10. W. Amos, and J. White, "How the confocal laser scanning microscope entered biological research," Biology of the Cell 95, 335-342 (2003). 11. K. Carlsson, P.-E. Danielsson, R. Lenz, A. Liljeborg, L. Majlöf, and N. Åslund, "Three-dimensional microscopy using a confocal laser scanning microscope," Optics letters 10, 53-55 (1985). 12. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). 13. X. S. Xie, and J. K. Trautman, "Optical studies of single molecules at room temperature," Annual review of physical chemistry 49, 441-480 (1998). 14. W. E. Moerner, and M. Orrit, "Illuminating single molecules in condensed matter," Science 283, 1670-1676 (1999). 15. S. W. Hell, "Far-field optical nanoscopy," science 316, 1153-1158 (2007). 16. P. Tinnefeld, C. Eggeling, and S. W. Hell, Far-field optical nanoscopy (Springer, 2015). 17. A. H. Zewail, "Laser femtochemistry," Science 242, 1645-1653 (1988). 18. A. H. Zewail, "Femtochemistry," in Femtochemistry: Ultrafast Dynamics of the Chemical Bond: Volume I(World Scientific, 1994), pp. 3-22. 19. A. H. Zewail, "Femtochemistry: Atomic-scale dynamics of the chemical bond," The Journal of Physical Chemistry A 104, 5660-5694 (2000). 20. a. Woutersen, U. Emmerichs, and H. Bakker, "Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure," Science 278, 658-660 (1997). 21. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, "Coherent nonlinear optical imaging: beyond fluorescence microscopy," Annual review of physical chemistry 62, 507-530 (2011). 22. T. Ye, D. Fu, and W. S. Warren, "Nonlinear absorption microscopy," Photochemistry and photobiology 85, 631-645 (2009). 23. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, "Pump-probe imaging differentiates melanoma from melanocytic nevi," Science translational medicine 3, 71ra15-71ra15 (2011). 24. T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, "In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature," Biomedical optics express 2, 1576-1583 (2011). 25. M. J. Simpson, J. W. Wilson, M. A. Phipps, F. E. Robles, M. A. Selim, and W. S. Warren, "Nonlinear microscopy of eumelanin and pheomelanin with subcellular resolution," Journal of Investigative Dermatology 133, 1822-1826 (2013). 26. C. Dong, P. So, T. French, and E. Gratton, "Fluorescence lifetime imaging by asynchronous pump-probe microscopy," Biophysical journal 69, 2234-2242 (1995). 27. C. Buehler, C. Dong, P. So, T. French, and E. Gratton, "Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy," Biophysical journal 79, 536-549 (2000). 28. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, "Two-color, two-photon, and excited-state absorption microscopy," Journal of biomedical optics 12, 054004 (2007). 29. L. Wei, and W. Min, "Pump-probe optical microscopy for imaging nonfluorescent chromophores," Analytical and bioanalytical chemistry 403, 2197-2202 (2012). 30. J. Cabanillas‐Gonzalez, G. Grancini, and G. Lanzani, "Pump‐Probe Spectroscopy in Organic Semiconductors: Monitoring Fundamental Processes of Relevance in Optoelectronics," Advanced materials 23, 5468-5485 (2011). 31. P.-T. Dong, and J.-X. Cheng, "Pump–probe microscopy: Theory, instrumentation, and applications," Spectroscopy 32, 24-36 (2017). 32. A. Einstein, "Zur quantentheorie der strahlung," Phys. Z. 18, 121-128 (1917). 33. F.-J. Kau, and P.-Y. Lin, "Stimulated emission-based optical detection system," (Google Patents, 2014). 34. S. Savikhin, "Shot‐noise‐limited detection of absorbance changes induced by subpicojoule laser pulses in optical pump‐probe experiments," Review of scientific instruments 66, 4470-4474 (1995). 35. S. Frolov, and Z. Vardeny, "Double-modulation electro-optic sampling for pump-and-probe ultrafast correlation measurements," Review of Scientific Instruments 69, 1257-1260 (1998). 36. J. Vollmann, D. M. Profunser, and J. Dual, "Sensitivity improvement of a pump–probe set-up for thin film and microstructure metrology," Ultrasonics 40, 757-763 (2002). 37. R. Augulis, and D. Zigmantas, "Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance," Optics express 19, 13126-13133 (2011). 38. P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New Journal of Physics 11, 033026 (2009). 39. L. Wei, Z. Chen, and W. Min, "Stimulated emission reduced fluorescence microscopy: a concept for extending the fundamental depth limit of two-photon fluorescence imaging," Biomedical optics express 3, 1465-1475 (2012). 40. J. H. Scofield, "Frequency‐domain description of a lock‐in amplifier," American journal of physics 62, 129-133 (1994). 41. P.-Y. Lin, S.-S. Lee, C.-S. Chang, and F.-J. Kao, "Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay," Optics express 20, 11445-11450 (2012). 42. R. Ranjan, A. D’arco, M. A. Ferrara, M. Indolfi, M. Larobina, and L. Sirleto, "Integration of stimulated Raman gain and stimulated Raman losses detection modes in a single nonlinear microscope," Optics express 26, 26317-26326 (2018). 43. Y. Ozeki, F. Dake, S. i. Kajiyama, K. Fukui, and K. Itoh, "Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy," Optics express 17, 3651-3658 (2009). 44. C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, "Stimulated Raman spectroscopic imaging by microsecond delay-line tuning," Optica 3, 1377-1380 (2016). 45. X. Audier, N. Balla, and H. Rigneault, "Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line," Optics Letters 42, 294-297 (2017). 46. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, "Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy," Optics express 17, 12532-12539 (2009). 47. C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, "Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source," Optics letters 41, 3731-3734 (2016). 48. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. i. Kajiyama, K. Fukui, and K. Itoh, "Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses," Optics express 18, 13708-13719 (2010). 49. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, "High-speed molecular spectral imaging of tissue with stimulated Raman scattering," Nature photonics 6, 845 (2012). 50. L. Czerwinski, J. Nixdorf, G. Di Florio, and P. Gilch, "Broadband stimulated Raman microscopy with 0.1 ms pixel acquisition time," Optics letters 41, 3021-3024 (2016). 51. Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, "Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser," IEEE Journal of Selected Topics in Quantum Electronics 25, 1-11 (2018). 52. P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, "Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy," Applied Physics Letters 112, 161101 (2018). 53. P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, "Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging," Proceedings of the National Academy of Sciences 109, 6390-6393 (2012). 54. S.-I. Shin, and Y.-S. Lim, "Simple autocorrelation measurement by using a GaP photoconductive detector," Journal of the Optical Society of Korea 20, 435-440 (2016). 55. C.-M. Chern, J.-F. Liao, Y.-H. Wang, and Y.-C. Shen, "Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice," Free Radical Biology and Medicine 52, 1634-1647 (2012). 56. C.-M. Chern, Y.-H. Wang, K.-T. Liou, Y.-C. Hou, C.-C. Chen, and Y.-C. Shen, "2-Methoxystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke," Biochemical pharmacology 87, 502-514 (2014). 57. J. H. Van Der Velde, J. H. Smit, E. Hebisch, M. Punter, and T. Cordes, "Self-healing dyes for super-resolution fluorescence microscopy," Journal of Physics D: Applied Physics 52, 034001 (2018). 58. A. Gogoi, Y.-C. Liang, G. Keiser, and F.-J. Kao, "Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications," in Advanced Optical Methods for Brain Imaging, F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Springer Singapore, Singapore, 2019), pp. 189-218. 59. A. Ambrózy, Electronic noise (McGraw-Hill International Book Company, 1982). 60. P. J. Winzer, "Shot-noise formula for time-varying photon rates: a general derivation," JOSA B 14, 2424-2429 (1997). 61. J. Märk, A. Wagener, E. Zhang, and J. Laufer, "Photoacoustic pump-probe tomography of fluorophores in vivo using interleaved image acquisition for motion suppression," Scientific reports 7, 40496 (2017). 62. L. Doronina-Amitonova, I. Fedotov, and A. Zheltikov, "Ultrahigh-contrast imaging by temporally modulated stimulated emission depletion," Optics letters 40, 725-728 (2015). 63. T. Dellwig, P.-Y. Lin, and F.-J. Kao, "Long-distance fluorescence lifetime imaging using stimulated emission," Journal of biomedical optics 17, 011009 (2012). 64. J. Ge, C. Kuang, S.-S. Lee, and F.-J. Kao, "Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission," Optics express 20, 28216-28221 (2012). 65. P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, "Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution," Japanese Journal of Applied Physics 52, 028004 (2013). 66. S. W. Hell, and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Optics letters 19, 780-782 (1994). 67. I. Gryczynski, S. W. Hell, and J. R. Lakowicz, "Light quenching of pyridine2 fluorescence with time-delayed pulses," Biophysical chemistry 66, 13-24 (1997). 68. J. R. Lakowicz, and I. Gryczynski, "Fluorescence Quenching by Stimulated Emission," in Topics in Fluorescence Spectroscopy(Springer, 2002), pp. 305-360. 69. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, "Sharper low-power STED nanoscopy by time gating," Nature methods 8, 571 (2011). 70. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, "Strategies to maximize the performance of a STED microscope," Optics express 20, 7362-7374 (2012). 71. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, "rsEGFP2 enables fast RESOLFT nanoscopy of living cells," Elife 1, e00248 (2012). 72. F. Dake, N. Fukutake, S. Hayashi, and Y. Taki, "Super-resolving nonlinear fluorescence microscopy with pump–probe setup using repetitive stimulated transition," Applied Physics Express 11, 012401 (2017). 73. J. Miyazaki, K. Kawasumi, and T. Kobayashi, "Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes," Review of Scientific Instruments 85, 093703 (2014). 74. F. Dake, and Y. Taki, "Time-domain fluorescence lifetime imaging by nonlinear fluorescence microscopy constructed of a pump-probe setup with two-wavelength laser pulses," Applied optics 57, 757-762 (2018). 75. E. Rittweger, B. Rankin, V. Westphal, and S. W. Hell, "Fluorescence depletion mechanisms in super-resolving STED microscopy," Chemical physics letters 442, 483-487 (2007). 76. V. Westphal, and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Physical review letters 94, 143903 (2005). 77. H. U. Manual, "Zurich Instruments, 2014." 78. A. Rose, Vision: human and electronic (Springer Science & Business Media, 2013). 79. V. Ghukasyan, C.-C. Hsu, C.-R. Liu, F.-J. Kao, and T.-H. Cheng, "Fluorescence lifetime dynamics of enhanced green fluorescent protein in protein aggregates with expanded polyglutamine," Journal of biomedical optics 15, 016008 (2010). 80. M. Elangovan, R. Day, and A. Periasamy, "Nanosecond fluorescence resonance energy transfer‐fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell," Journal of microscopy 205, 3-14 (2002). 81. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, "Ultrafast pump-probe microscopy with high temporal dynamic range," Optics express 20, 10330-10338 (2012). 82. T. Fujiwara, "Time-resolved single-molecule fluorescence microscopy: Pump–probe scheme employing bursts of pulses and gated photon counting," Optics Communications 420, 215-218 (2018).
|