|
Acceleratorjo, D. Q. (2015). System Requirements for SAS® 9.4 Foundation for Microsoft Windows. Agante, P., & De Sá, J. M. (1999). ECG noise filtering using wavelets with soft-thresholding methods. Paper presented at the Computers in Cardiology 1999. Vol. 26 (Cat. No. 99CH37004). Agarwal, R., Bills, J. E., Hecht, T. J., & Light, R. P. (2011). Role of home blood pressure monitoring in overcoming therapeutic inertia and improving hypertension control: a systematic review and meta-analysis. Hypertension, 57(1), 29-38. Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., . . . McEvoy, J. W. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology, 74(10), 1376-1414. Artinian, N. T., Washington, O. G., & Templin, T. N. (2001). Effects of home telemonitoring and community-based monitoring on blood pressure control in urban African Americans: a pilot study. Heart & Lung, 30(3), 191-199. Barrett, J. K., Huille, R., Parker, R., Yano, Y., & Griswold, M. (2019). Estimating the association between blood pressure variability and cardiovascular disease: An application using the ARIC Study. Statistics in medicine, 38(10), 1855-1868. Bauer, D. J., Gottfredson, N. C., Dean, D., & Zucker, R. A. (2013). Analyzing repeated measures data on individuals nested within groups: Accounting for dynamic group effects. Psychological methods, 18(1), 1. Beaver, H. A., & Lee, A. G. (2019). Geriatric Ophthalmology: A Competency-based Approach: Springer. Bosworth, H. B., Olsen, M. K., Grubber, J. M., Neary, A. M., Orr, M. M., Powers, B. J., . . . Li, Y. (2009). Two self-management interventions to improve hypertension control: a randomized trial. Annals of internal medicine, 151(10), 687-695. Brankovic, S., Pilav, A., Macak-Hadziomerovic, A., Rama, A., & Segalo, M. (2013). Frequency of blood pressure measuring according to the degree of working population education in canton sarajevo. Materia socio-medica, 25(3), 210. Cappuccio, F. P., Kerry, S. M., Forbes, L., & Donald, A. (2004). Blood pressure control by home monitoring: meta-analysis of randomised trials. bmj, 329(7458), 145. Chadachan, V. M., Ye, M. T., Tay, J. C., Subramaniam, K., & Setia, S. (2018). Understanding short-term blood-pressure-variability phenotypes: from concept to clinical practice. International journal of general medicine, 11, 241. Clarke, R., Shipley, M., Lewington, S., Youngman, L., Collins, R., Marmot, M., & Peto, R. (1999). Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. American journal of epidemiology, 150(4), 341-353. Frattola, A., Parati, G., Cuspidi, C., Albini, F., & Mancia, G. (1993). Prognostic value of 24-hour blood pressure variability. Journal of hypertension, 11(10), 1133-1137. Glynn, L. G., Murphy, A. W., Smith, S. M., Schroeder, K., & Fahey, T. (2010). Interventions used to improve control of blood pressure in patients with hypertension. Cochrane database of systematic reviews(3). Hashimoto, T., Kikuya, M., Ohkubo, T., Satoh, M., Metoki, H., Inoue, R., . . . Hirose, T. (2012). Home blood pressure level, blood pressure variability, smoking, and stroke risk in Japanese men: the Ohasama study. American journal of hypertension, 25(8), 883-891. Hughes, M. D. (1993). Regression dilution in the proportional hazards model. Biometrics, 1056-1066. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(3), 90. Johansson, J. K., Niiranen, T. J., Puukka, P. J., & Jula, A. M. (2012). Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension, 59(2), 212-218. Kaplan, A. L., Cohen, E. R., & Zimlichman, E. (2017). Improving patient engagement in self-measured blood pressure monitoring using a mobile health technology. Health information science and systems, 5(1), 4. Kario, K. (2016). Evidence and perspectives on the 24-hour management of hypertension: hemodynamic biomarker-initiated ‘anticipation medicine’for zero cardiovascular event. Progress in cardiovascular diseases, 59(3), 262-281. Kikuya, M., Ohkubo, T., Metoki, H., Asayama, K., Hara, A., Obara, T., . . . Totsune, K. (2008). Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension, 52(6), 1045-1050. Kim, K.-i., Nikzad, N., Quer, G., Wineinger, N. E., Vegreville, M., Normand, A., . . . Steinhubl, S. (2017). Real world home blood pressure variability in over 56,000 individuals with nearly 17 million measurements. American journal of hypertension, 31(5), 566-573. Mancia, G., & Parati, G. (2003). The role of blood pressure variability in end-organ damage. Journal of hypertension, 21, S17-S23. Mancia, G., Parati, G., Hennig, M., Flatau, B., Omboni, S., Glavina, F., . . . Zanchetti, A. (2001). Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). Journal of hypertension, 19(11), 1981-1989. Manios, E., Tsagalis, G., Tsivgoulis, G., Barlas, G., Koroboki, E., Michas, F., . . . Zakopoulos, N. (2009). Time rate of blood pressure variation is associated with impaired renal function in hypertensive patients. Journal of hypertension, 27(11), 2244-2248. McKinney, W. (2010). Data structures for statistical computing in python. Paper presented at the Proceedings of the 9th Python in Science Conference. McManus, R. J., Mant, J., Bray, E. P., Holder, R., Jones, M. I., Greenfield, S., . . . Little, P. (2010). Telemonitoring and self-management in the control of hypertension (TASMINH2): a randomised controlled trial. The Lancet, 376(9736), 163-172. McManus, R. J., Mant, J., Haque, M. S., Bray, E. P., Bryan, S., Greenfield, S. M., . . . Penaloza, C. (2014). Effect of self-monitoring and medication self-titration on systolic blood pressure in hypertensive patients at high risk of cardiovascular disease: the TASMIN-SR randomized clinical trial. Jama, 312(8), 799-808. Mena, L., Pintos, S., Queipo, N. V., Aizpurua, J. A., Maestre, G., & Sulbaran, T. (2005). A reliable index for the prognostic significance of blood pressure variability. Journal of hypertension, 23(3), 505-511. Merlo, A., Farina, D., & Merletti, R. (2003). A fast and reliable technique for muscle activity detection from surface EMG signals. IEEE transactions on biomedical engineering, 50(3), 316-323. Muntner, P., Shimbo, D., Tonelli, M., Reynolds, K., Arnett, D. K., & Oparil, S. (2011). The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension, 57(2), 160-166. Niiranen, T. J., Hanninen, M.-R., Johansson, J., Reunanen, A., & Jula, A. M. (2010). Home-measured blood pressure is a stronger predictor of cardiovascular risk than office blood pressure: the Finn-Home study. Hypertension, 55(6), 1346-1351. Ohkubo, T., Imai, Y., Tsuji, I., Nagai, K., Kato, J., Kikuchi, N., . . . Kikuya, M. (1998). Home blood pressure measurement has a stronger predictive power for mortality than does screening blood pressure measurement: a population-based observation in Ohasama, Japan. Journal of hypertension, 16(7), 971-975. Ostchega, Y., Zhang, G., Kit, B. K., & Nwankwo, T. (2017). Factors associated with home blood pressure monitoring among US adults: National Health and Nutrition Examination Survey, 2011–2014. American journal of hypertension, 30(11), 1126-1132. Parati, G., Ochoa, J. E., Lombardi, C., & Bilo, G. (2013). Assessment and management of blood-pressure variability. Nature Reviews Cardiology, 10(3), 143. Parati, G., Pomidossi, G., Albini, F., Malaspina, D., & Mancia, G. (1987). Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. Journal of hypertension, 5(1), 93-98. Patel, P., Ordunez, P., DiPette, D., Escobar, M. C., Hassell, T., Wyss, F., . . . Network, P. (2016). Improved blood pressure control to reduce cardiovascular disease morbidity and mortality: the Standardized Hypertension Treatment and Prevention Project. The Journal of Clinical Hypertension, 18(12), 1284-1294. Rickerby, J. (2002). The role of home blood pressure measurement in managing hypertension: an evidence-based review. Journal of human hypertension, 16(7), 469. Rosner, B., Willett, W., & Spiegelman, D. (1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within‐person measurement error. Statistics in medicine, 8(9), 1051-1069. Rothwell, P. M. (2010). Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. The Lancet, 375(9718), 938-948. Rothwell, P. M., Howard, S. C., Dolan, E., O'Brien, E., Dobson, J. E., Dahlöf, B., . . . Poulter, N. R. (2010). Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. The Lancet, 375(9718), 895-905. Sakuma, M., Imai, Y., Nagai, K., Watanabe, N., Sakuma, H., Minami, N., . . . Abe, K. (1997). Reproducibility of home blood pressure measurements over a 1-year period. American journal of hypertension, 10(7), 798-803. Sander, D., Kukla, C., Klingelhöfer, J. r., Winbeck, K., & Conrad, B. (2000). Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study. Circulation, 102(13), 1536-1541. Sega, R., Corrao, G., Bombelli, M., Beltrame, L., Facchetti, R., Grassi, G., . . . Mancia, G. (2002). Blood pressure variability and organ damage in a general population: results from the PAMELA study. Hypertension, 39(2), 710-714. Shimbo, D., Newman, J. D., Aragaki, A. K., LaMonte, M. J., Bavry, A. A., Allison, M., . . . Wassertheil-Smoller, S. (2012). Association between annual visit-to-visit blood pressure variability and stroke in postmenopausal women: data from the Women's Health Initiative. Hypertension, 60(3), 625-630. Soh, M.-S., Park, J.-S., Seo, K.-W., Yang, H.-M., Lim, H.-S., Choi, B.-J., . . . Tahk, S.-J. (2019). Visit-to-visit systolic blood pressure variability in patients with ST-elevation myocardial infarction predicts long-term cardiovascular outcomes. Journal of human hypertension, 1. Stanaway, J. D., Afshin, A., Gakidou, E., Lim, S. S., Abate, D., Abate, K. H., . . . Abd-Allah, F. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1923-1994. Tao, Y., & Papadias, D. (2006). Maintaining sliding window skylines on data streams. IEEE Transactions on Knowledge and Data Engineering, 18(3), 377-391. Tatasciore, A., Renda, G., Zimarino, M., Soccio, M., Bilo, G., Parati, G., . . . De Caterina, R. (2007). Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension, 50(2), 325-332. Tucker, K. L., Sheppard, J. P., Stevens, R., Bosworth, H. B., Bove, A., Bray, E. P., . . . Green, B. B. (2017). Self-monitoring of blood pressure in hypertension: a systematic review and individual patient data meta-analysis. PLoS medicine, 14(9), e1002389. Uhlig, K., Patel, K., Ip, S., Kitsios, G. D., & Balk, E. M. (2013). Self-measured blood pressure monitoring in the management of hypertension: a systematic review and meta-analysis. Annals of internal medicine, 159(3), 185-194. Ushigome, E., Fukui, M., Hamaguchi, M., Senmaru, T., Sakabe, K., Tanaka, M., . . . Nakamura, N. (2011). The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus. Hypertension Research, 34(12), 1271. Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Lukauskas, S., Gemperline, D. C., . . . Warmenhoven, J. (2017). mwaskom/seaborn: v0. 8.1 (September 2017). Zenodo, doi: https://doi. org/10.5281/zenodo, 883859. Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular biology and evolution, 30(7), 1720-1728. Zivot, E., & Wang, J. (2001). Modelling Financial Time Series with S-PLUS. Unpublished Working Paper.
|