|
Aronica, E., Gorter, J. A., Ijlst-Keizers, H., Rozemuller, A. J., Yankaya, B., Leenstra, S., & Troost, D. (2003). Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci, 17(10), 2106-2118. Auladell, C., de Lemos, L., Verdaguer, E., Ettcheto, M., Busquets, O., Lazarowski, A., Beas-Zarate, C., Olloquequi, J., Folch, J., & Camins, A. (2017). Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration. Front Biosci (Landmark Ed), 22, 795-814. Avignone, E., Ulmann, L., Levavasseur, F., Rassendren, F., & Audinat, E. (2008). Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci, 28(37), 9133-9144. Ayata, C., Ayata, G., Hara, H., Matthews, R. T., Beal, M. F., Ferrante, R. J., Endres, M., Kim, A., Christie, R. H., Waeber, C., Huang, P. L., Hyman, B. T., & Moskowitz, M. A. (1997). Mechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice. J Neurosci, 17(18), 6908-6917. Ben-Ari, Y., & Cossart, R. (2000). Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci, 23(11), 580-587. Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzeriat, K., & Escartin, C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci, 9, 278. Bernardinelli, Y., Muller, D., & Nikonenko, I. (2014). Astrocyte-synapse structural plasticity. Neural Plast, 2014, 232105. Bradley, S. J., & Challiss, R. A. (2012). G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors. Biochem Pharmacol, 84(3), 249-259. Bradley, S. J., Watson, J. M., & Challiss, R. A. (2009). Effects of positive allosteric modulators on single-cell oscillatory Ca2+ signaling initiated by the type 5 metabotropic glutamate receptor. Mol Pharmacol, 76(6), 1302-1313. Bruno, V., Battaglia, G., Copani, A., Cespedes, V. M., Galindo, M. F., Cena, V., Sanchez-Prieto, J., Gasparini, F., Kuhn, R., Flor, P. J., & Nicoletti, F. (2001). An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. Eur J Neurosci, 13(8), 1469-1478. Caviedes, A., Varas-Godoy, M., Lafourcade, C., Sandoval, S., Bravo-Alegria, J., Kaehne, T., Massmann, A., Figueroa, J. P., Nualart, F., & Wyneken, U. (2017). Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures. Front Cell Neurosci, 11, 180. Chang, L. H., Lin, H. C., Huang, S. S., Chen, I. C., Chu, K. W., Chih, C. L., Liang, Y. W., Lee, Y. C., Chen, Y. Y., Lee, Y. H., & Lee, I. H. (2018). Blockade of soluble epoxide hydrolase attenuates post-ischemic neuronal hyperexcitation and confers resilience against stroke with TrkB activation. Sci Rep, 8(1), 118. Chang, Y. C., Kim, H. W., Rapoport, S. I., & Rao, J. S. (2008). Chronic NMDA administration increases neuroinflammatory markers in rat frontal cortex: cross-talk between excitotoxicity and neuroinflammation. Neurochem Res, 33(11), 2318-2323. Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity. J Neurosci, 7(2), 369-379. Choi, D. W., Koh, J. Y., & Peters, S. (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci, 8(1), 185-196. Crupi, R., Impellizzeri, D., & Cuzzocrea, S. (2019). Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci, 12, 20. D'Ascenzo, M., Fellin, T., Terunuma, M., Revilla-Sanchez, R., Meaney, D. F., Auberson, Y. P., Moss, S. J., & Haydon, P. G. (2007). mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A, 104(6), 1995-2000. Dal-Cim, T., Martins, W. C., Santos, A. R., & Tasca, C. I. (2011). Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2)+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience, 183, 212-220. Davis, C. M., Liu, X., & Alkayed, N. J. (2017). Cytochrome P450 eicosanoids in cerebrovascular function and disease. Pharmacol Ther, 179, 31-46. de Lemos, L., Junyent, F., Camins, A., Castro-Torres, R. D., Folch, J., Olloquequi, J., Beas-Zarate, C., Verdaguer, E., & Auladell, C. (2018). Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms. Mol Neurobiol, 55(5), 4437-4452. Deshmane, S. L., Kremlev, S., Amini, S., & Sawaya, B. E. (2009). Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res, 29(6), 313-326. Dhanasekaran, D. N., & Reddy, E. P. (2008). JNK signaling in apoptosis. Oncogene, 27(48), 6245-6251. Doria, J. G., Silva, F. R., de Souza, J. M., Vieira, L. B., Carvalho, T. G., Reis, H. J., Pereira, G. S., Dobransky, T., & Ribeiro, F. M. (2013). Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease. Br J Pharmacol, 169(4), 909-921. EnayetAllah, A. E., Luria, A., Luo, B., Tsai, H. J., Sura, P., Hammock, B. D., & Grant, D. F. (2008). Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J Biol Chem, 283(52), 36592-36598. Evstratova, A., & Toth, K. (2014). Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci, 8, 28. Filosa, J. A., & Iddings, J. A. (2013). Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol, 305(5), H609-619. Fornage, M., Lee, C. R., Doris, P. A., Bray, M. S., Heiss, G., Zeldin, D. C., & Boerwinkle, E. (2005). The soluble epoxide hydrolase gene harbors sequence variation associated with susceptibility to and protection from incident ischemic stroke. Hum Mol Genet, 14(19), 2829-2837. Gauthier, K. M., Deeter, C., Krishna, U. M., Reddy, Y. K., Bondlela, M., Falck, J. R., & Campbell, W. B. (2002). 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res, 90(9), 1028-1036. Geurts, J. J., Wolswijk, G., Bo, L., van der Valk, P., Polman, C. H., Troost, D., & Aronica, E. (2003). Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain, 126(Pt 8), 1755-1766. Graeber, M. B., Li, W., & Rodriguez, M. L. (2011). Role of microglia in CNS inflammation. FEBS Lett, 585(23), 3798-3805. Grewer, C., Gameiro, A., Zhang, Z., Tao, Z., Braams, S., & Rauen, T. (2008). Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life, 60(9), 609-619. Hansson, E., Ronnback, L., Persson, L. I., Lowenthal, A., Noppe, M., Alling, C., & Karlsson, B. (1984). Cellular composition of primary cultures from cerebral cortex, striatum, hippocampus, brainstem and cerebellum. Brain Res, 300(1), 9-18. Hardingham, G. E., & Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 11(10), 682-696. Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5(5), 405-414. Hernandez-Jimenez, M., Martinez-Lopez, D., Gabande-Rodriguez, E., Martin-Segura, A., Lizasoain, I., Ledesma, M. D., Dotti, C. G., & Moro, M. A. (2016). Seladin-1/DHCR24 Is Neuroprotective by Associating EAAT2 Glutamate Transporter to Lipid Rafts in Experimental Stroke. Stroke, 47(1), 206-213. Hoshi, A., Tsunoda, A., Yamamoto, T., Tada, M., Kakita, A., & Ugawa, Y. (2018). Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer's disease. Neuropathol Appl Neurobiol, 44(6), 628-638. Hou, H. H., Hammock, B. D., Su, K. H., Morisseau, C., Kou, Y. R., Imaoka, S., Oguro, A., Shyue, S. K., Zhao, J. F., & Lee, T. S. (2012). N-terminal domain of soluble epoxide hydrolase negatively regulates the VEGF-mediated activation of endothelial nitric oxide synthase. Cardiovasc Res, 93(1), 120-129. Huang, H. J., Wang, Y. T., Lin, H. C., Lee, Y. H., & Lin, A. M. (2018). Soluble Epoxide Hydrolase Inhibition Attenuates MPTP-Induced Neurotoxicity in the Nigrostriatal Dopaminergic System: Involvement of alpha-Synuclein Aggregation and ER Stress. Mol Neurobiol, 55(1), 138-144. Hung, C. C., Lin, C. H., Chang, H., Wang, C. Y., Lin, S. H., Hsu, P. C., Sun, Y. Y., Lin, T. N., Shie, F. S., Kao, L. S., Chou, C. M., & Lee, Y. H. (2016). Astrocytic GAP43 Induced by the TLR4/NF-kappaB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. J Neurosci, 36(6), 2027-2043. Hung, Y. W., Hung, S. W., Wu, Y. C., Wong, L. K., Lai, M. T., Shih, Y. H., Lee, T. S., & Lin, Y. Y. (2015). Soluble epoxide hydrolase activity regulates inflammatory responses and seizure generation in two mouse models of temporal lobe epilepsy. Brain, Behav, Immun, 43, 118-129. Ibanez, I., Diez-Guerra, F. J., Gimenez, C., & Zafra, F. (2016). Activity dependent internalization of the glutamate transporter GLT-1 mediated by beta-arrestin 1 and ubiquitination. Neuropharmacology, 107, 376-386. Iliff, J. J., & Alkayed, N. J. (2009). Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent. Future Neurol, 4(2), 179-199. Imig, J. D. (2012). Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev, 92(1), 101-130. Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov, 8(10), 794-805. Inceoglu, B., Zolkowska, D., Yoo, H. J., Wagner, K. M., Yang, J., Hackett, E., Hwang, S. H., Lee, K. S., Rogawski, M. A., Morisseau, C., & Hammock, B. D. (2013). Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures. PLoS One, 8(12), e80922. Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A., & Littman, D. R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol, 20(11), 4106-4114. Kobayashi, E., Nakano, M., Kubota, K., Himuro, N., Mizoguchi, S., Chikenji, T., Otani, M., Mizue, Y., Nagaishi, K., & Fujimiya, M. (2018). Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep, 8(1), 1712. Koehler, R. C., Roman, R. J., & Harder, D. R. (2009). Astrocytes and the regulation of cerebral blood flow. Trends Neurosci, 32(3), 160-169. Koerner, I. P., Jacks, R., DeBarber, A. E., Koop, D., Mao, P., Grant, D. F., & Alkayed, N. J. (2007). Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. J Neurosci, 27(17), 4642-4649. Kundu, S., Roome, T., Bhattacharjee, A., Carnevale, K. A., Yakubenko, V. P., Zhang, R., Hwang, S. H., Hammock, B. D., & Cathcart, M. K. (2013). Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo. J Lipid Res, 54(2), 436-447. Lavialle, M., Aumann, G., Anlauf, E., Prols, F., Arpin, M., & Derouiche, A. (2011). Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A, 108(31), 12915-12919. Li, L., Li, N., Pang, W., Zhang, X., Hammock, B. D., Ai, D., & Zhu, Y. (2014). Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis. PLoS One, 9(4), e94092. Liddelow, S. A., & Barres, B. A. (2017). Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, 46(6), 957-967. Lin, C. H., Juan, S. H., Wang, C. Y., Sun, Y. Y., Chou, C. M., Chang, S. F., Hu, S. Y., Lee, W. S., & Lee, Y. H. (2008). Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J Neurochem, 104(5), 1415-1429. Liu, M., & Alkayed, N. J. (2005). Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes. J Cereb Blood Flow Metab, 25(8), 939-948. Liu, M., Zhu, Q., Wu, J., Yu, X., Hu, M., Xie, X., Yang, Z., Yang, J., Feng, Y. Q., & Yue, J. (2017). Glutamate affects the production of epoxyeicosanoids within the brain: The up-regulation of brain CYP2J through the MAPK-CREB signaling pathway. Toxicology, 381, 31-38. Ma, D., Tao, B., Warashina, S., Kotani, S., Lu, L., Kaplamadzhiev, D. B., Mori, Y., Tonchev, A. B., & Yamashima, T. (2007). Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res, 58(4), 394-401. Ma, J., Zhang, L., Han, W., Shen, T., Ma, C., Liu, Y., Nie, X., Liu, M., Ran, Y., & Zhu, D. (2012). Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J Lipid Res, 53(6), 1093-1105. MacVicar, B. A., & Newman, E. A. (2015). Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol, 7(5), a020388. Mahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells, 8(2), E184. Malherbe, P., Kratochwil, N., Zenner, M. T., Piussi, J., Diener, C., Kratzeisen, C., Fischer, C., & Porter, R. H. (2003). Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol, 64(4), 823-832. Mark, L. P., Prost, R. W., Ulmer, J. L., Smith, M. M., Daniels, D. L., Strottmann, J. M., Brown, W. D., & Hacein-Bey, L. (2001). Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol, 22(10), 1813-1824. Marowsky, A., Burgener, J., Falck, J. R., Fritschy, J. M., & Arand, M. (2009). Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism. Neuroscience, 163(2), 646-661. Morisseau, C., & Hammock, B. D. (2013). Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol, 53, 37-58. Morisseau, C., Inceoglu, B., Schmelzer, K., Tsai, H. J., Jinks, S. L., Hegedus, C. M., & Hammock, B. D. (2010). Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res, 51(12), 3481-3490. Mule, N. K., Orjuela Leon, A. C., Falck, J. R., Arand, M., & Marowsky, A. (2017). 11,12 -Epoxyeicosatrienoic acid (11,12 EET) reduces excitability and excitatory transmission in the hippocampus. Neuropharmacology, 123, 310-321. Nakajima, K., Yamamoto, S., Kohsaka, S., & Kurihara, T. (2008). Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro. Neurosci Lett, 436(3), 331-334. Newman, J. W., Morisseau, C., Harris, T. R., & Hammock, B. D. (2003). The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci U S A, 100(4), 1558-1563. Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol, 50, 295-322. Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 164(3880), 719-721. Panatier, A., & Robitaille, R. (2016). Astrocytic mGluR5 and the tripartite synapse. Neuroscience, 323, 29-34. Park, S. K., Herrnreiter, A., Pfister, S. L., Gauthier, K. M., Falck, B. A., Falck, J. R., & Campbell, W. B. (2018). GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem, 293(27), 10675-10691. Perez-Alvarez, A., Navarrete, M., Covelo, A., Martin, E. D., & Araque, A. (2014). Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci, 34(38), 12738-12744. Qu, Y., Liu, Y., Zhu, Y., Chen, L., Sun, W., & Zhu, Y. (2017). Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways. Mol Cells, 40(11), 837-846. Reiner, A., & Levitz, J. (2018). Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron, 98(6), 1080-1098. Ren, Q., Ma, M., Ishima, T., Morisseau, C., Yang, J., Wagner, K. M., Zhang, J. C., Yang, C., Yao, W., Dong, C., Han, M., Hammock, B. D., & Hashimoto, K. (2016). Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A, 113(13), E1944-1952. Reus, G. Z., Abelaira, H. M., Tuon, T., Titus, S. E., Ignacio, Z. M., Rodrigues, A. L., & Quevedo, J. (2016). Glutamatergic NMDA Receptor as Therapeutic Target for Depression. Adv Protein Chem Struct Biol, 103, 169-202. Rojo, A. I., Innamorato, N. G., Martin-Moreno, A. M., De Ceballos, M. L., Yamamoto, M., & Cuadrado, A. (2010). Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson's disease. Glia, 58(5), 588-598. Rose, C. R., Felix, L., Zeug, A., Dietrich, D., Reiner, A., & Henneberger, C. (2017). Astroglial Glutamate Signaling and Uptake in the Hippocampus. Front Mol Neurosci, 10, 451. Rossi, D., Brambilla, L., Valori, C. F., Roncoroni, C., Crugnola, A., Yokota, T., Bredesen, D. E., & Volterra, A. (2008). Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ, 15(11), 1691-1700. Sakers, K., Lake, A. M., Khazanchi, R., Ouwenga, R., Vasek, M. J., Dani, A., & Dougherty, J. D. (2017). Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A, 114(19), E3830-E3838. Sanna, M. D., Ghelardini, C., & Galeotti, N. (2015). Activation of JNK pathway in spinal astrocytes contributes to acute ultra-low-dose morphine thermal hyperalgesia. Pain, 156(7), 1265-1275. Sattler, R., & Tymianski, M. (2001). Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol, 24(1-3), 107-129. Schmelzer, K. R., Kubala, L., Newman, J. W., Kim, I. H., Eiserich, J. P., & Hammock, B. D. (2005). Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci U S A, 102(28), 9772-9777. Schousboe, A., Scafidi, S., Bak, L. K., Waagepetersen, H. S., & McKenna, M. C. (2014). Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol, 11, 13-30. Sellers, K. W., Sun, C., Diez-Freire, C., Waki, H., Morisseau, C., Falck, J. R., Hammock, B. D., Paton, J. F., & Raizada, M. K. (2005). Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat. FASEB J, 19(6), 626-628. Spector, A. A., & Norris, A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol, 292(3), C996-1012. Spigolon, G., Veronesi, C., Bonny, C., & Vercelli, A. (2010). c-Jun N-terminal kinase signaling pathway in excitotoxic cell death following kainic acid-induced status epilepticus. Eur J Neurosci, 31(7), 1261-1272. Stagi, M., Gorlovoy, P., Larionov, S., Takahashi, K., & Neumann, H. (2006). Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J, 20(14), 2573-2575. Sura, P., Sura, R., Enayetallah, A. E., & Grant, D. F. (2008). Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem, 56(6), 551-559. Takahashi, K., Foster, J. B., & Lin, C. L. (2015). Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci, 72(18), 3489-3506. Takuma, K., Baba, A., & Matsuda, T. (2004). Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol, 72(2), 111-127. Terashvili, M., Sarkar, P., Nostrand, M. V., Falck, J. R., & Harder, D. R. (2012). The protective effect of astrocyte-derived 14,15-epoxyeicosatrienoic acid on hydrogen peroxide-induced cell injury in astrocyte-dopaminergic neuronal cell line co-culture. Neuroscience, 223, 68-76. Tian, D. S., Peng, J., Murugan, M., Feng, L. J., Liu, J. L., Eyo, U. B., Zhou, L. J., Mogilevsky, R., Wang, W., & Wu, L. J. (2017). Chemokine CCL2-CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1beta Production after Status Epilepticus. J Neurosci, 37(33), 7878-7892. Torres-Platas, S. G., Comeau, S., Rachalski, A., Bo, G. D., Cruceanu, C., Turecki, G., Giros, B., & Mechawar, N. (2014). Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation, 11, 12. Trabelsi, Y., Amri, M., Becq, H., Molinari, F., & Aniksztejn, L. (2017). The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors. Glia, 65(2), 401-415. Ulas, J., Satou, T., Ivins, K. J., Kesslak, J. P., Cotman, C. W., & Balazs, R. (2000). Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia, 30(4), 352-361. Umpierre, A. D., West, P. J., White, J. A., & Wilcox, K. S. (2019). Conditional Knockout of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake. J Neurosci, 39(4), 727-742. Varvel, N. H., Neher, J. J., Bosch, A., Wang, W., Ransohoff, R. M., Miller, R. J., & Dingledine, R. (2016). Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A, 113(38), E5665-5674. Vermeiren, C., Najimi, M., Vanhoutte, N., Tilleux, S., de Hemptinne, I., Maloteaux, J. M., & Hermans, E. (2005). Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem, 94(2), 405-416. Vezzani, A., Balosso, S., & Ravizza, T. (2008). The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun, 22(6), 797-803. Viviani, B., Boraso, M., Marchetti, N., & Marinovich, M. (2014). Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology, 43, 10-20. Wang, J. Q., Fibuch, E. E., & Mao, L. (2007). Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem, 100(1), 1-11. Wu, C. H., Shyue, S. K., Hung, T. H., Wen, S., Lin, C. C., Chang, C. F., & Chen, S. F. (2017a). Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation, 14(1), 230. Wu, H. F., Chen, Y. J., Wu, S. Z., Lee, C. W., Chen, I. T., Lee, Y. C., Huang, C. C., Hsing, C. H., Tang, C. W., & Lin, H. C. (2017b). Soluble Epoxide Hydrolase Inhibitor and 14,15-Epoxyeicosatrienoic Acid-Facilitated Long-Term Potentiation through cAMP and CaMKII in the Hippocampus. Neural Plast, 2017, 3467805. Wu, H. F., Yen, H. J., Huang, C. C., Lee, Y. C., Wu, S. Z., Lee, T. S., & Lin, H. C. (2015). Soluble epoxide hydrolase inhibitor enhances synaptic neurotransmission and plasticity in mouse prefrontal cortex. J Biomed Sci, 22, 94. Wu, P. C., & Kao, L. S. (2016). Calcium regulation in mouse mesencephalic neurons-Differential roles of Na(+)/Ca(2+) exchanger, mitochondria and endoplasmic reticulum. Cell Calcium, 59(6), 299-311. Xie, C., Sun, J., Qiao, W., Lu, D., Wei, L., Na, M., Song, Y., Hou, X., & Lin, Z. (2011). Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One, 6(9), e24966. Yang, D., Sun, Y. Y., Bhaumik, S. K., Li, Y., Baumann, J. M., Lin, X., Zhang, Y., Lin, S. H., Dunn, R. S., Liu, C. Y., Shie, F. S., Lee, Y. H., Wills-Karp, M., Chougnet, C. A., Kallapur, S. G., Lewkowich, I. P., Lindquist, D. M., Murali-Krishna, K., & Kuan, C. Y. (2014). Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Neurosci, 34(49), 16467-16481. Yang, Y., Tian, X., Xu, D., Zheng, F., Lu, X., Zhang, Y., Ma, Y., Li, Y., Xu, X., Zhu, B., & Wang, X. (2018). GPR40 modulates epileptic seizure and NMDA receptor function. Sci Adv, 4(10), eaau2357. Yuan, L., Liu, J., Dong, R., Zhu, J., Tao, C., Zheng, R., & Zhu, S. (2016). 14,15-epoxyeicosatrienoic acid promotes production of BDNF from astrocytes and exerts neuroprotective effects during ischemic injury. Neuropathol Appl Neurobiol, 42(7), 607-620. Zhang, K., Wang, H., Xu, M., Frank, J. A., & Luo, J. (2018). Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation, 15(1), 197. Zhang, L., Ding, H., Yan, J., Hui, R., Wang, W., Kissling, G. E., Zeldin, D. C., & Wang, D. W. (2008a). Genetic variation in cytochrome P450 2J2 and soluble epoxide hydrolase and risk of ischemic stroke in a Chinese population. Pharmacogenet Genomics, 18(1), 45-51. Zhang, W., Koerner, I. P., Noppens, R., Grafe, M., Tsai, H. J., Morisseau, C., Luria, A., Hammock, B. D., Falck, J. R., & Alkayed, N. J. (2007). Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab, 27(12), 1931-1940. Zhang, W., Otsuka, T., Sugo, N., Ardeshiri, A., Alhadid, Y. K., Iliff, J. J., DeBarber, A. E., Koop, D. R., & Alkayed, N. J. (2008b). Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke, 39(7), 2073-2078. Zheng, S., Eacker, S. M., Hong, S. J., Gronostajski, R. M., Dawson, T. M., & Dawson, V. L. (2010). NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice. J Clin Invest, 120(7), 2446-2456. Zhou, J., & Sutherland, M. L. (2004). Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci, 24Aronica, E., Gorter, J. A., Ijlst-Keizers, H., Rozemuller, A. J., Yankaya, B., Leenstra, S., & Troost, D. (2003). Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci, 17(10), 2106-2118. Auladell, C., de Lemos, L., Verdaguer, E., Ettcheto, M., Busquets, O., Lazarowski, A., Beas-Zarate, C., Olloquequi, J., Folch, J., & Camins, A. (2017). Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration. Front Biosci (Landmark Ed), 22, 795-814. Avignone, E., Ulmann, L., Levavasseur, F., Rassendren, F., & Audinat, E. (2008). Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci, 28(37), 9133-9144. Ayata, C., Ayata, G., Hara, H., Matthews, R. T., Beal, M. F., Ferrante, R. J., Endres, M., Kim, A., Christie, R. H., Waeber, C., Huang, P. L., Hyman, B. T., & Moskowitz, M. A. (1997). Mechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice. J Neurosci, 17(18), 6908-6917. Ben-Ari, Y., & Cossart, R. (2000). Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci, 23(11), 580-587. Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzeriat, K., & Escartin, C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci, 9, 278. Bernardinelli, Y., Muller, D., & Nikonenko, I. (2014). Astrocyte-synapse structural plasticity. Neural Plast, 2014, 232105. Bradley, S. J., & Challiss, R. A. (2012). G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors. Biochem Pharmacol, 84(3), 249-259. Bradley, S. J., Watson, J. M., & Challiss, R. A. (2009). Effects of positive allosteric modulators on single-cell oscillatory Ca2+ signaling initiated by the type 5 metabotropic glutamate receptor. Mol Pharmacol, 76(6), 1302-1313. Bruno, V., Battaglia, G., Copani, A., Cespedes, V. M., Galindo, M. F., Cena, V., Sanchez-Prieto, J., Gasparini, F., Kuhn, R., Flor, P. J., & Nicoletti, F. (2001). An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. Eur J Neurosci, 13(8), 1469-1478. Caviedes, A., Varas-Godoy, M., Lafourcade, C., Sandoval, S., Bravo-Alegria, J., Kaehne, T., Massmann, A., Figueroa, J. P., Nualart, F., & Wyneken, U. (2017). Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures. Front Cell Neurosci, 11, 180. Chang, L. H., Lin, H. C., Huang, S. S., Chen, I. C., Chu, K. W., Chih, C. L., Liang, Y. W., Lee, Y. C., Chen, Y. Y., Lee, Y. H., & Lee, I. H. (2018). Blockade of soluble epoxide hydrolase attenuates post-ischemic neuronal hyperexcitation and confers resilience against stroke with TrkB activation. Sci Rep, 8(1), 118. Chang, Y. C., Kim, H. W., Rapoport, S. I., & Rao, J. S. (2008). Chronic NMDA administration increases neuroinflammatory markers in rat frontal cortex: cross-talk between excitotoxicity and neuroinflammation. Neurochem Res, 33(11), 2318-2323. Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity. J Neurosci, 7(2), 369-379. Choi, D. W., Koh, J. Y., & Peters, S. (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci, 8(1), 185-196. Crupi, R., Impellizzeri, D., & Cuzzocrea, S. (2019). Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci, 12, 20. D'Ascenzo, M., Fellin, T., Terunuma, M., Revilla-Sanchez, R., Meaney, D. F., Auberson, Y. P., Moss, S. J., & Haydon, P. G. (2007). mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A, 104(6), 1995-2000. Dal-Cim, T., Martins, W. C., Santos, A. R., & Tasca, C. I. (2011). Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2)+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience, 183, 212-220. Davis, C. M., Liu, X., & Alkayed, N. J. (2017). Cytochrome P450 eicosanoids in cerebrovascular function and disease. Pharmacol Ther, 179, 31-46. de Lemos, L., Junyent, F., Camins, A., Castro-Torres, R. D., Folch, J., Olloquequi, J., Beas-Zarate, C., Verdaguer, E., & Auladell, C. (2018). Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms. Mol Neurobiol, 55(5), 4437-4452. Deshmane, S. L., Kremlev, S., Amini, S., & Sawaya, B. E. (2009). Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res, 29(6), 313-326. Dhanasekaran, D. N., & Reddy, E. P. (2008). JNK signaling in apoptosis. Oncogene, 27(48), 6245-6251. Doria, J. G., Silva, F. R., de Souza, J. M., Vieira, L. B., Carvalho, T. G., Reis, H. J., Pereira, G. S., Dobransky, T., & Ribeiro, F. M. (2013). Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease. Br J Pharmacol, 169(4), 909-921. EnayetAllah, A. E., Luria, A., Luo, B., Tsai, H. J., Sura, P., Hammock, B. D., & Grant, D. F. (2008). Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J Biol Chem, 283(52), 36592-36598. Evstratova, A., & Toth, K. (2014). Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci, 8, 28. Filosa, J. A., & Iddings, J. A. (2013). Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol, 305(5), H609-619. Fornage, M., Lee, C. R., Doris, P. A., Bray, M. S., Heiss, G., Zeldin, D. C., & Boerwinkle, E. (2005). The soluble epoxide hydrolase gene harbors sequence variation associated with susceptibility to and protection from incident ischemic stroke. Hum Mol Genet, 14(19), 2829-2837. Gauthier, K. M., Deeter, C., Krishna, U. M., Reddy, Y. K., Bondlela, M., Falck, J. R., & Campbell, W. B. (2002). 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res, 90(9), 1028-1036. Geurts, J. J., Wolswijk, G., Bo, L., van der Valk, P., Polman, C. H., Troost, D., & Aronica, E. (2003). Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain, 126(Pt 8), 1755-1766. Graeber, M. B., Li, W., & Rodriguez, M. L. (2011). Role of microglia in CNS inflammation. FEBS Lett, 585(23), 3798-3805. Grewer, C., Gameiro, A., Zhang, Z., Tao, Z., Braams, S., & Rauen, T. (2008). Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life, 60(9), 609-619. Hansson, E., Ronnback, L., Persson, L. I., Lowenthal, A., Noppe, M., Alling, C., & Karlsson, B. (1984). Cellular composition of primary cultures from cerebral cortex, striatum, hippocampus, brainstem and cerebellum. Brain Res, 300(1), 9-18. Hardingham, G. E., & Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 11(10), 682-696. Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5(5), 405-414. Hernandez-Jimenez, M., Martinez-Lopez, D., Gabande-Rodriguez, E., Martin-Segura, A., Lizasoain, I., Ledesma, M. D., Dotti, C. G., & Moro, M. A. (2016). Seladin-1/DHCR24 Is Neuroprotective by Associating EAAT2 Glutamate Transporter to Lipid Rafts in Experimental Stroke. Stroke, 47(1), 206-213. Hoshi, A., Tsunoda, A., Yamamoto, T., Tada, M., Kakita, A., & Ugawa, Y. (2018). Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer's disease. Neuropathol Appl Neurobiol, 44(6), 628-638. Hou, H. H., Hammock, B. D., Su, K. H., Morisseau, C., Kou, Y. R., Imaoka, S., Oguro, A., Shyue, S. K., Zhao, J. F., & Lee, T. S. (2012). N-terminal domain of soluble epoxide hydrolase negatively regulates the VEGF-mediated activation of endothelial nitric oxide synthase. Cardiovasc Res, 93(1), 120-129. Huang, H. J., Wang, Y. T., Lin, H. C., Lee, Y. H., & Lin, A. M. (2018). Soluble Epoxide Hydrolase Inhibition Attenuates MPTP-Induced Neurotoxicity in the Nigrostriatal Dopaminergic System: Involvement of alpha-Synuclein Aggregation and ER Stress. Mol Neurobiol, 55(1), 138-144. Hung, C. C., Lin, C. H., Chang, H., Wang, C. Y., Lin, S. H., Hsu, P. C., Sun, Y. Y., Lin, T. N., Shie, F. S., Kao, L. S., Chou, C. M., & Lee, Y. H. (2016). Astrocytic GAP43 Induced by the TLR4/NF-kappaB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. J Neurosci, 36(6), 2027-2043. Hung, Y. W., Hung, S. W., Wu, Y. C., Wong, L. K., Lai, M. T., Shih, Y. H., Lee, T. S., & Lin, Y. Y. (2015). Soluble epoxide hydrolase activity regulates inflammatory responses and seizure generation in two mouse models of temporal lobe epilepsy. Brain, Behav, Immun, 43, 118-129. Ibanez, I., Diez-Guerra, F. J., Gimenez, C., & Zafra, F. (2016). Activity dependent internalization of the glutamate transporter GLT-1 mediated by beta-arrestin 1 and ubiquitination. Neuropharmacology, 107, 376-386. Iliff, J. J., & Alkayed, N. J. (2009). Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent. Future Neurol, 4(2), 179-199. Imig, J. D. (2012). Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev, 92(1), 101-130. Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov, 8(10), 794-805. Inceoglu, B., Zolkowska, D., Yoo, H. J., Wagner, K. M., Yang, J., Hackett, E., Hwang, S. H., Lee, K. S., Rogawski, M. A., Morisseau, C., & Hammock, B. D. (2013). Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures. PLoS One, 8(12), e80922. Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A., & Littman, D. R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol, 20(11), 4106-4114. Kobayashi, E., Nakano, M., Kubota, K., Himuro, N., Mizoguchi, S., Chikenji, T., Otani, M., Mizue, Y., Nagaishi, K., & Fujimiya, M. (2018). Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep, 8(1), 1712. Koehler, R. C., Roman, R. J., & Harder, D. R. (2009). Astrocytes and the regulation of cerebral blood flow. Trends Neurosci, 32(3), 160-169. Koerner, I. P., Jacks, R., DeBarber, A. E., Koop, D., Mao, P., Grant, D. F., & Alkayed, N. J. (2007). Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. J Neurosci, 27(17), 4642-4649. Kundu, S., Roome, T., Bhattacharjee, A., Carnevale, K. A., Yakubenko, V. P., Zhang, R., Hwang, S. H., Hammock, B. D., & Cathcart, M. K. (2013). Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo. J Lipid Res, 54(2), 436-447. Lavialle, M., Aumann, G., Anlauf, E., Prols, F., Arpin, M., & Derouiche, A. (2011). Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A, 108(31), 12915-12919. Li, L., Li, N., Pang, W., Zhang, X., Hammock, B. D., Ai, D., & Zhu, Y. (2014). Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis. PLoS One, 9(4), e94092. Liddelow, S. A., & Barres, B. A. (2017). Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, 46(6), 957-967. Lin, C. H., Juan, S. H., Wang, C. Y., Sun, Y. Y., Chou, C. M., Chang, S. F., Hu, S. Y., Lee, W. S., & Lee, Y. H. (2008). Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J Neurochem, 104(5), 1415-1429. Liu, M., & Alkayed, N. J. (2005). Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes. J Cereb Blood Flow Metab, 25(8), 939-948. Liu, M., Zhu, Q., Wu, J., Yu, X., Hu, M., Xie, X., Yang, Z., Yang, J., Feng, Y. Q., & Yue, J. (2017). Glutamate affects the production of epoxyeicosanoids within the brain: The up-regulation of brain CYP2J through the MAPK-CREB signaling pathway. Toxicology, 381, 31-38. Ma, D., Tao, B., Warashina, S., Kotani, S., Lu, L., Kaplamadzhiev, D. B., Mori, Y., Tonchev, A. B., & Yamashima, T. (2007). Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res, 58(4), 394-401. Ma, J., Zhang, L., Han, W., Shen, T., Ma, C., Liu, Y., Nie, X., Liu, M., Ran, Y., & Zhu, D. (2012). Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J Lipid Res, 53(6), 1093-1105. MacVicar, B. A., & Newman, E. A. (2015). Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol, 7(5), a020388. Mahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells, 8(2), E184. Malherbe, P., Kratochwil, N., Zenner, M. T., Piussi, J., Diener, C., Kratzeisen, C., Fischer, C., & Porter, R. H. (2003). Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol, 64(4), 823-832. Mark, L. P., Prost, R. W., Ulmer, J. L., Smith, M. M., Daniels, D. L., Strottmann, J. M., Brown, W. D., & Hacein-Bey, L. (2001). Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol, 22(10), 1813-1824. Marowsky, A., Burgener, J., Falck, J. R., Fritschy, J. M., & Arand, M. (2009). Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism. Neuroscience, 163(2), 646-661. Morisseau, C., & Hammock, B. D. (2013). Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol, 53, 37-58. Morisseau, C., Inceoglu, B., Schmelzer, K., Tsai, H. J., Jinks, S. L., Hegedus, C. M., & Hammock, B. D. (2010). Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res, 51(12), 3481-3490. Mule, N. K., Orjuela Leon, A. C., Falck, J. R., Arand, M., & Marowsky, A. (2017). 11,12 -Epoxyeicosatrienoic acid (11,12 EET) reduces excitability and excitatory transmission in the hippocampus. Neuropharmacology, 123, 310-321. Nakajima, K., Yamamoto, S., Kohsaka, S., & Kurihara, T. (2008). Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro. Neurosci Lett, 436(3), 331-334. Newman, J. W., Morisseau, C., Harris, T. R., & Hammock, B. D. (2003). The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci U S A, 100(4), 1558-1563. Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol, 50, 295-322. Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 164(3880), 719-721. Panatier, A., & Robitaille, R. (2016). Astrocytic mGluR5 and the tripartite synapse. Neuroscience, 323, 29-34. Park, S. K., Herrnreiter, A., Pfister, S. L., Gauthier, K. M., Falck, B. A., Falck, J. R., & Campbell, W. B. (2018). GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem, 293(27), 10675-10691. Perez-Alvarez, A., Navarrete, M., Covelo, A., Martin, E. D., & Araque, A. (2014). Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci, 34(38), 12738-12744. Qu, Y., Liu, Y., Zhu, Y., Chen, L., Sun, W., & Zhu, Y. (2017). Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways. Mol Cells, 40(11), 837-846. Reiner, A., & Levitz, J. (2018). Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron, 98(6), 1080-1098. Ren, Q., Ma, M., Ishima, T., Morisseau, C., Yang, J., Wagner, K. M., Zhang, J. C., Yang, C., Yao, W., Dong, C., Han, M., Hammock, B. D., & Hashimoto, K. (2016). Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A, 113(13), E1944-1952. Reus, G. Z., Abelaira, H. M., Tuon, T., Titus, S. E., Ignacio, Z. M., Rodrigues, A. L., & Quevedo, J. (2016). Glutamatergic NMDA Receptor as Therapeutic Target for Depression. Adv Protein Chem Struct Biol, 103, 169-202. Rojo, A. I., Innamorato, N. G., Martin-Moreno, A. M., De Ceballos, M. L., Yamamoto, M., & Cuadrado, A. (2010). Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson's disease. Glia, 58(5), 588-598. Rose, C. R., Felix, L., Zeug, A., Dietrich, D., Reiner, A., & Henneberger, C. (2017). Astroglial Glutamate Signaling and Uptake in the Hippocampus. Front Mol Neurosci, 10, 451. Rossi, D., Brambilla, L., Valori, C. F., Roncoroni, C., Crugnola, A., Yokota, T., Bredesen, D. E., & Volterra, A. (2008). Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ, 15(11), 1691-1700. Sakers, K., Lake, A. M., Khazanchi, R., Ouwenga, R., Vasek, M. J., Dani, A., & Dougherty, J. D. (2017). Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A, 114(19), E3830-E3838. Sanna, M. D., Ghelardini, C., & Galeotti, N. (2015). Activation of JNK pathway in spinal astrocytes contributes to acute ultra-low-dose morphine thermal hyperalgesia. Pain, 156(7), 1265-1275. Sattler, R., & Tymianski, M. (2001). Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol, 24(1-3), 107-129. Schmelzer, K. R., Kubala, L., Newman, J. W., Kim, I. H., Eiserich, J. P., & Hammock, B. D. (2005). Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci U S A, 102(28), 9772-9777. Schousboe, A., Scafidi, S., Bak, L. K., Waagepetersen, H. S., & McKenna, M. C. (2014). Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol, 11, 13-30. Sellers, K. W., Sun, C., Diez-Freire, C., Waki, H., Morisseau, C., Falck, J. R., Hammock, B. D., Paton, J. F., & Raizada, M. K. (2005). Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat. FASEB J, 19(6), 626-628. Spector, A. A., & Norris, A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol, 292(3), C996-1012. Spigolon, G., Veronesi, C., Bonny, C., & Vercelli, A. (2010). c-Jun N-terminal kinase signaling pathway in excitotoxic cell death following kainic acid-induced status epilepticus. Eur J Neurosci, 31(7), 1261-1272. Stagi, M., Gorlovoy, P., Larionov, S., Takahashi, K., & Neumann, H. (2006). Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J, 20(14), 2573-2575. Sura, P., Sura, R., Enayetallah, A. E., & Grant, D. F. (2008). Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem, 56(6), 551-559. Takahashi, K., Foster, J. B., & Lin, C. L. (2015). Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci, 72(18), 3489-3506. Takuma, K., Baba, A., & Matsuda, T. (2004). Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol, 72(2), 111-127. Terashvili, M., Sarkar, P., Nostrand, M. V., Falck, J. R., & Harder, D. R. (2012). The protective effect of astrocyte-derived 14,15-epoxyeicosatrienoic acid on hydrogen peroxide-induced cell injury in astrocyte-dopaminergic neuronal cell line co-culture. Neuroscience, 223, 68-76. Tian, D. S., Peng, J., Murugan, M., Feng, L. J., Liu, J. L., Eyo, U. B., Zhou, L. J., Mogilevsky, R., Wang, W., & Wu, L. J. (2017). Chemokine CCL2-CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1beta Production after Status Epilepticus. J Neurosci, 37(33), 7878-7892. Torres-Platas, S. G., Comeau, S., Rachalski, A., Bo, G. D., Cruceanu, C., Turecki, G., Giros, B., & Mechawar, N. (2014). Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation, 11, 12. Trabelsi, Y., Amri, M., Becq, H., Molinari, F., & Aniksztejn, L. (2017). The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors. Glia, 65(2), 401-415. Ulas, J., Satou, T., Ivins, K. J., Kesslak, J. P., Cotman, C. W., & Balazs, R. (2000). Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia, 30(4), 352-361. Umpierre, A. D., West, P. J., White, J. A., & Wilcox, K. S. (2019). Conditional Knockout of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake. J Neurosci, 39(4), 727-742. Varvel, N. H., Neher, J. J., Bosch, A., Wang, W., Ransohoff, R. M., Miller, R. J., & Dingledine, R. (2016). Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A, 113(38), E5665-5674. Vermeiren, C., Najimi, M., Vanhoutte, N., Tilleux, S., de Hemptinne, I., Maloteaux, J. M., & Hermans, E. (2005). Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem, 94(2), 405-416. Vezzani, A., Balosso, S., & Ravizza, T. (2008). The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun, 22(6), 797-803. Viviani, B., Boraso, M., Marchetti, N., & Marinovich, M. (2014). Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology, 43, 10-20. Wang, J. Q., Fibuch, E. E., & Mao, L. (2007). Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem, 100(1), 1-11. Wu, C. H., Shyue, S. K., Hung, T. H., Wen, S., Lin, C. C., Chang, C. F., & Chen, S. F. (2017a). Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation, 14(1), 230. Wu, H. F., Chen, Y. J., Wu, S. Z., Lee, C. W., Chen, I. T., Lee, Y. C., Huang, C. C., Hsing, C. H., Tang, C. W., & Lin, H. C. (2017b). Soluble Epoxide Hydrolase Inhibitor and 14,15-Epoxyeicosatrienoic Acid-Facilitated Long-Term Potentiation through cAMP and CaMKII in the Hippocampus. Neural Plast, 2017, 3467805. Wu, H. F., Yen, H. J., Huang, C. C., Lee, Y. C., Wu, S. Z., Lee, T. S., & Lin, H. C. (2015). Soluble epoxide hydrolase inhibitor enhances synaptic neurotransmission and plasticity in mouse prefrontal cortex. J Biomed Sci, 22, 94. Wu, P. C., & Kao, L. S. (2016). Calcium regulation in mouse mesencephalic neurons-Differential roles of Na(+)/Ca(2+) exchanger, mitochondria and endoplasmic reticulum. Cell Calcium, 59(6), 299-311. Xie, C., Sun, J., Qiao, W., Lu, D., Wei, L., Na, M., Song, Y., Hou, X., & Lin, Z. (2011). Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One, 6(9), e24966. Yang, D., Sun, Y. Y., Bhaumik, S. K., Li, Y., Baumann, J. M., Lin, X., Zhang, Y., Lin, S. H., Dunn, R. S., Liu, C. Y., Shie, F. S., Lee, Y. H., Wills-Karp, M., Chougnet, C. A., Kallapur, S. G., Lewkowich, I. P., Lindquist, D. M., Murali-Krishna, K., & Kuan, C. Y. (2014). Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Neurosci, 34(49), 16467-16481. Yang, Y., Tian, X., Xu, D., Zheng, F., Lu, X., Zhang, Y., Ma, Y., Li, Y., Xu, X., Zhu, B., & Wang, X. (2018). GPR40 modulates epileptic seizure and NMDA receptor function. Sci Adv, 4(10), eaau2357. Yuan, L., Liu, J., Dong, R., Zhu, J., Tao, C., Zheng, R., & Zhu, S. (2016). 14,15-epoxyeicosatrienoic acid promotes production of BDNF from astrocytes and exerts neuroprotective effects during ischemic injury. Neuropathol Appl Neurobiol, 42(7), 607-620. Zhang, K., Wang, H., Xu, M., Frank, J. A., & Luo, J. (2018). Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation, 15(1), 197. Zhang, L., Ding, H., Yan, J., Hui, R., Wang, W., Kissling, G. E., Zeldin, D. C., & Wang, D. W. (2008a). Genetic variation in cytochrome P450 2J2 and soluble epoxide hydrolase and risk of ischemic stroke in a Chinese population. Pharmacogenet Genomics, 18(1), 45-51. Zhang, W., Koerner, I. P., Noppens, R., Grafe, M., Tsai, H. J., Morisseau, C., Luria, A., Hammock, B. D., Falck, J. R., & Alkayed, N. J. (2007). Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab, 27(12), 1931-1940. Zhang, W., Otsuka, T., Sugo, N., Ardeshiri, A., Alhadid, Y. K., Iliff, J. J., DeBarber, A. E., Koop, D. R., & Alkayed, N. J. (2008b). Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke, 39(7), 2073-2078. Zheng, S., Eacker, S. M., Hong, S. J., Gronostajski, R. M., Dawson, T. M., & Dawson, V. L. (2010). NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice. J Clin Invest, 120(7), 2446-2456. Zhou, J., & Sutherland, M. L. (2004). Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci, 24(28), 6301-6306.
|