(3.238.7.202) 您好!臺灣時間:2021/03/03 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林冠宏
研究生(外文):Guan-Hong Lin
論文名稱:趨化素5-趨化素受體5軸線對肥胖中缺血急性腎損傷後之病生理影響
論文名稱(外文):Effect of CCL5-CCR5 axis on the pathophysiology of ischemic acute kidney injury in obesity
指導教授:阮琪昌
指導教授(外文):Chi-Chang Juan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:117
中文關鍵詞:肥胖急性腎損傷趨化素5
外文關鍵詞:obesityacute kidney injuryC-C motif chemokine ligand 5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著近年來西方飲食習慣的普及,肥胖成為了一項重要的議題,肥胖對於疾病治療的影響也愈趨重要。缺血性急性腎損傷是常見的外科手術治療後併發症,並且具有高度的死亡率和發病率。在臨床研究中,肥胖患者經過手術後併發缺血性急性腎損傷的嚴重程度和比例都有增加。細胞趨化素受體CCR5和其配體CCL5在肥胖的患者中有表現量增加的情形,而在肥胖患者中CCL5-CCR5的表現量增加對於缺血性急性腎損傷的影響仍是未知的。我們以C57BL/6小鼠建立飲食誘導肥胖-雙側腎臟缺血再灌流動物模式,來模擬罹患缺血性腎損傷之肥胖病患並進行腎損傷的組織學研究。我們發現,和一般飲食-雙側腎臟缺血再灌流模式相比,腎臟損傷以及纖維化於飲食誘導肥胖-雙側腎臟缺血再灌流模式生物中是增加的。而與一般飲食的雙側腎缺血再灌流模式相比較下,在飲食誘導肥胖-雙側腎在缺血再灌流模式生物的CCL5、CCR5表現量及腎臟中巨噬細胞皆有增加之情形。總結來說,在肥胖的情形下,發生缺血性急性腎損傷時所增加的CCL5-CCR5 軸線反應,在腎臟傷害的病生理機轉當中,扮演著相當重要的角色。
As the population of western diet habit, obesity becomes a critical issue on recent years; in addition, the interaction between obesity and clinical therapy are more important gradually. Ischemic acute kidney injury (ischemic AKI) is a common complication by high mortality and morbidity on patients who have critical ills after surgery. In clinical research revealed that the severity and morbidity of ischemic AKI which complicated after surgery are increased. The expression of C-C motif chemokine receptor 5 (CCR5) and its substrate C-C motif ligand 5 (CCL5) is increased on obesity patient; however, the effect of increased expression of CCL5-CCR5 on ischemic AKI in obese patients is unknown. We used the C57BL/6 mice to build the diet-induced obesity-bilateral ischemia-reperfusion injury (DIO-BIRI) animal model to mimic the AKI-obesity patient. Our investigation reveal that the kidney injury and fibrosis on DIO-BIRI model are significant higher than it on normal chow diet-BIRI (NCD-BIRI) model. Additionally, the expression level of CCL5, CCR5 and macrophage are increased on the kidney of DIO-BIRI animal model. In conclusion, the accumulated CCL5-CCR5 reaction occurred by AKI plays a critical role on increased the renal pathophysiology in AKI patients with obesity.
目錄 ------------------------------------------------------------------------------------------------------------------I
中文摘要 --------------------------------------------------------------------------------------------------------------V
Abstract -------------------------------------------------------------------------------------------------------------VI
名詞縮寫表-----------------------------------------------------------------------------------------------------------VII
第一章 前言 ----------------------------------------------------------------------------------------------------------1
第二章 文獻回顧 ------------------------------------------------------------------------------------------------------3
一、 肥胖與代謝症候群 ----------------------------------------------------------------------------------------------3
1. 代謝症候群概述 ------------------------------------------------------------------------------------------------3
2. 脂肪組織與肥胖 ------------------------------------------------------------------------------------------------5
3. 高脂肪飲食 ----------------------------------------------------------------------------------------------------6
4. 胰島素阻抗 ----------------------------------------------------------------------------------------------------7
二、 肥胖與腎臟疾病 ------------------------------------------------------------------------------------------------9
1. 腎臟構造與生理功能 --------------------------------------------------------------------------------------------9
2. 肥胖導致慢性腎衰竭 -------------------------------------------------------------------------------------------12
3. 肥胖導致慢性腎衰竭之病理現象 ---------------------------------------------------------------------------------14
三、 缺血性急性腎損傷 ---------------------------------------------------------------------------------------------16
1. 缺血性急性腎損傷概述 -----------------------------------------------------------------------------------------16
2. 缺血再灌流傷害 -----------------------------------------------------------------------------------------------18
3. 急性腎損傷與慢性腎衰竭 ---------------------------------------------------------------------------------------20
4. 嗜中性白血球明膠相關性脂質運載蛋白 ---------------------------------------------------------------------------21
四、 趨化素及趨化素受體--------------------------------------------------------------------------------------------22
1. 趨化素及趨化素受體概述 ---------------------------------------------------------------------------------------23
2. 趨化素5 ------------------------------------------------------------------------------------------------------23
3. 趨化激素受體5 ------------------------------------------------------------------------------------------------24
4. 肥胖與CCL5-CCR5 axis------------------------------------------------------------------------------------------25
5. 趨化因子與急性腎損傷------------------------------------------------------------------------------------------26
第三章 材料與方法 ---------------------------------------------------------------------------------------------------28
一、 究動機與目的 -------------------------------------------------------------------------------------------------28
二、 實驗設計 -----------------------------------------------------------------------------------------------------29
實驗目的(一):探討不同時間長度雙側腎臟缺血再灌流模式引發急性腎損傷之效應。--------------------------------------------29
實驗目的(二):探討雙側腎臟缺血再灌流模式引發急性腎損傷存活七天後之腎損傷組織型態學。----------------------------------29
實驗目的(三):小鼠飲食引發肥胖之動物模式建立。------------------------------------------------------------------------29
實驗目的(四):小鼠飲食引發肥胖-雙腎缺血再灌流動物模式之建立。---------------------------------------------------------30
實驗目的(五):觀察高脂肪飲食引發肥胖之小鼠經過急性腎損傷後腎功能指標變化。--------------------------------------------30
實驗目的(六):觀察高脂肪飲食引發肥胖之小鼠經過急性腎損傷後腎皮質組織組織病理變化。------------------------------------30
實驗目的(七):觀察高脂肪飲食引發肥胖之小鼠經過急性腎損傷後腎外側髓質外裙帶組織病理變化。------------------------------31
實驗目的(八):觀察高脂肪飲食引發肥胖之小鼠經過急性腎損傷後腎絲球組織病理變化。----------------------------------------31
實驗目的(九):觀察正常飲食及高脂肪飲食引發肥胖之小鼠經過急性腎損傷後,CCL5表現之差異。--------------------------------31
實驗目的(十):觀察正常飲食及高脂肪飲食引發肥胖之小鼠經過急性腎損傷後,CCR5表現之差異。--------------------------------31
實驗目的(十一):觀察正常飲食及高脂肪飲食引發肥胖之小鼠經過急性腎損傷後,巨噬細胞生物標記F4/80表現之差異。-------------32
三、 實驗方法及流程 -----------------------------------------------------------------------------------------------32
1. 建立兩側腎臟缺血再灌流之動物疾病模式 -------------------------------------------------------------------------32
2. 建立飲食誘導肥胖-兩側腎臟缺血再灌流之動物疾病模式-------------------------------------------------------------33
3. 口服葡萄糖耐受性測試 (Oral glucose tolerance test) -----------------------------------------------------------34
4. 葡萄糖、胰島素及HOMA -----------------------------------------------------------------------------------------34
5. 腎損傷指標檢驗------------------------------------------------------------------------------------------------35
6. 腎臟組織石蠟切片 ---------------------------------------------------------------------------------------------36
7. 腎臟組織冷凍切片 ---------------------------------------------------------------------------------------------37
8. 蘇木紫-伊紅染色法(Hematoxylin and eosin staining, H&E staining)-----------------------------------------------38
9. 過碘酸-戚氏染色法(Periodic acid-Schiff’s staining, PAS staining)---------------------------------------------39
10. 腎小管損傷分數(Tubulointerstitial lesion score, TSI)----------------------------------------------------------41
11. 急性腎小管壞死分數(Acute tubular necrotic score, ATN)---------------------------------------------------------42
12. 腎絲球斑痕化指數(Glomerulosclerosis index, GSI)---------------------------------------------------------------43
13. 免疫化學染色(Immunohistochemistry staining, IHC staining)-----------------------------------------------------43
14. 免疫螢光染色(Immunofluorescence staining, IF staining)--------------------------------------------------------46
15. 苦味酸-天狼星紅染色法(Picro-Sirius red staining, PSR staining)------------------------------------------------48
16. 腎間質纖維化及腎絲球纖維化----------------------------------------------------------------------------------- 50
四、 統計方法----------------------------------------------------------------------------------------------------- 51
五、 實驗材料、藥品、抗體與影像來源--------------------------------------------------------------------------------51
第四章 結果----------------------------------------------------------------------------------------------------------54
一、 不同時間雙側腎臟缺血再灌流損傷存活結果------------------------------------------------------------------------54
二、 雙側腎臟缺血再灌流損傷之腎實質損傷影響------------------------------------------------------------------------54
三、 餵食高脂飼料食之小鼠體重變化、體重成長變化監控及脂肪大小結果--------------------------------------------------55
四、 餵食高脂肪飼料之小鼠口服葡萄糖耐受度測試檢測結果--------------------------------------------------------------56
五、 餵食高脂肪飼料之小鼠空腹血糖、胰島素及HOMA測試檢測結果--------------------------------------------------------56
六、 餵食高脂肪飼料之小鼠於腎缺血再灌流損傷後之血液腎損傷指標變化。------------------------------------------------57
七、 餵食高脂肪飼料之小鼠於腎缺血再灌流損傷後之腎臟皮質組織學型態變化----------------------------------------------58
八、 餵食高脂肪飼料之小鼠於腎缺血再灌流損傷後之腎臟OSOM組織學型態變化----------------------------------------------59
九、 餵食高脂肪飼料之小鼠於腎缺血再灌流損傷後之腎臟腎絲球組織學型態變化--------------------------------------------61
十、 餵食高脂肪飼料之小鼠於腎缺血再灌流損傷後腎臟CCL5表現量變化結果------------------------------------------------62
十一、 餵食高脂肪飼料之小鼠於腎缺血再灌流損傷後腎臟CCR5表現量變化結果------------------------------------------------63
十二、 餵食高脂肪飼料之小鼠於腎缺血再灌流損傷後腎臟免疫浸潤生物標記F4/80表現量變化結果-------------------------------64
第五章 討論----------------------------------------------------------------------------------------------------------65
第六章 結論----------------------------------------------------------------------------------------------------------70
第七章 參考文獻------------------------------------------------------------------------------------------------------71
第八章 附表----------------------------------------------------------------------------------------------------------77
表一 慢性腎疾病階段區分及診斷指標-------------------------------------------------------------------------------------77
表二 RIFLE急性腎損傷階段區分及診斷指標--------------------------------------------------------------------------------78
表三 AKIN急性腎損傷階段區分及診斷指標---------------------------------------------------------------------------------79
表四 KDIGO急性腎損傷階段區分及診斷指標------------------------------------------------------------------------------- 80
第九章 附圖--------------------------------------------------------------------------------------------------------- 81
圖一 以過碘酸-戚氏染色法判斷腎臟組織構造------------------------------------------------------------------------------81
圖二 小鼠雙側腎臟缺血再灌流手術操作流程-------------------------------------------------------------------------------82
圖三 腎小管傷害類型圖示-----------------------------------------------------------------------------------------------83
圖四 8~10週齡小鼠於BIRI手術後腎皮質H&E染色型態觀察-------------------------------------------------------------------84
圖五 8~10週齡小鼠於BIRI手術後腎皮質損傷PAS染色之計數-----------------------------------------------------------------85
圖六 8~10週齡小鼠於BIRI手術後OSOM H&E染色型態觀察---------------------------------------------------------------------86
圖七 8~10週齡小鼠於BIRI手術後OSOM損傷PAS染色之計數-------------------------------------------------------------------87
圖八 不同飲食餵食之小鼠體重及攝食情形---------------------------------------------------------------------------------88
圖九 不同飲食餵食後小鼠之脂肪重量情形---------------------------------------------------------------------------------89
圖十 不同飲食餵食4週後小鼠之OGTT結果----------------------------------------------------------------------------------90
圖十一 不同飲食餵食10週後小鼠之空腹葡萄糖及胰島素結果-----------------------------------------------------------------91
圖十二 不同飲食餵食小鼠手術前之體重分配-------------------------------------------------------------------------------92
圖十三 不同飲食之小鼠BIRI手術後血漿肌酸酐濃度-------------------------------------------------------------------------93
圖十四 不同飲食之小鼠BIRI手術後尿素氮濃度-----------------------------------------------------------------------------94
圖十五 不同飲食之小鼠BIRI手術後腎皮質H&E染色型態觀察------------------------------------------------------------------95
圖十六 不同飲食之小鼠BIRI手術後腎皮質PAS染色之計數--------------------------------------------------------------------96
圖十七 不同飲食之小鼠BIRI手術後腎皮質纖維化之情形---------------------------------------------------------------------98
圖十八 不同飲食之小鼠BIRI手術後腎皮質NGAL表現之情形------------------------------------------------------------------100
圖十九 不同飲食之小鼠BIRI手術後OSOM H&E染色型態觀察------------------------------------------------------------------102
圖二十 不同飲食之小鼠BIRI手術後OSOM PAS染色之計數--------------------------------------------------------------------103
圖二十一 不同飲食之小鼠BIRI手術後OSOM纖維化之情形--------------------------------------------------------------------105
圖二十二 不同飲食之小鼠BIRI手術後OSOM NGAL表現之情形-----------------------------------------------------------------107
圖二十三 不同飲食之小鼠BIRI手術後腎絲球外觀及大小--------------------------------------------------------------------109
圖二十四 不同飲食之小鼠BIRI手術後腎絲球瘢痕化之情形------------------------------------------------------------------111
圖二十五 不同飲食之小鼠BIRI手術後腎絲球纖維化之情形------------------------------------------------------------------113
圖二十六 不同飲食之小鼠BIRI手術後腎臟CCL5表現之情形------------------------------------------------------------------115
圖二十七 不同飲食之小鼠BIRI手術後腎臟CCR5表現之情形------------------------------------------------------------------116
圖二十八 不同飲食之小鼠BIRI手術後腎臟F4/80表現之情形-----------------------------------------------------------------117
1. Alberti KG, and Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15: 539-553, 1998.
2. Basi S, Pupim LB, Simmons EM, Sezer MT, Shyr Y, Freedman S, Chertow GM, Mehta RL, Paganini E, Himmelfarb J, and Ikizler TA. Insulin resistance in critically ill patients with acute renal failure. Am J Physiol Renal Physiol 289: F259-264, 2005.
3. Benveniste EN, Liu Y, McFarland BC, and Qin H. Involvement of the janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 34: 577-588, 2014.
4. Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am 37: 635-646, viii-ix, 2008.
5. Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, and Buemi M. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis 52: 595-605, 2008.
6. Bonventre JV, and Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121: 4210-4221, 2011.
7. Bose SK, and Ray R. Hepatitis C virus infection and insulin resistance. World J Diabetes 5: 52-58, 2014.
8. Canaud G, and Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30: 575-583, 2015.
9. Cao W, Cui S, Yang L, Wu C, Liu J, Yang F, Liu Y, Bin J, and Hou FF. Contrast-Enhanced ultrasound for assessing renal perfusion impairment and predicting acute kidney injury to chronic kidney disease progression. Antioxid Redox Signal 27: 1397-1411, 2017.
10. Carden D, and Granger D. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000 Feb: 255-266, 2000.
11. Chen HH, Cheng PW, Ho WY, Lu PJ, Lai CC, Tseng YM, Fang HC, Sun GC, Hsiao M, Liu CP, and Tseng CJ. Renal denervation improves the baroreflex and GABA system in chronic kidney disease-induced hypertension. Sci Rep 6: 38447, 2016.
12. Chen X, Wei SY, Li JS, Zhang QF, Wang YX, Zhao SL, Yu J, Wang C, Qin Y, Wei QJ, Lv GX, and Li B. Overexpression of heme oxygenase-1 prevents renal interstitial inflammation and fibrosis induced by unilateral ureter obstruction. PLoS One 11: e0147084, 2016.
13. Chung AC, and Lan HY. Chemokines in renal injury. J Am Soc Nephrol 22: 802-809, 2011.
14. Danziger J, Chen KP, Lee J, Feng M, Mark RG, Celi LA, and Mukamal KJ. Obesity, acute kidney injury, and mortality in critical illness. Crit Care Med 44: 328-334, 2016.
15. Decleves AE, Zolkipli Z, Satriano J, Wang L, Nakayama T, Rogac M, Le TP, Nortier JL, Farquhar MG, Naviaux RK, and Sharma K. Regulation of lipid accumulation by AMP-activated kinase in high fat diet-induced kidney injury. Kidney Int 85: 611-623, 2014.
16. Del Corno M, Liu QH, Schols D, de Clercq E, Gessani S, Freedman BD, and Collman RG. HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood 98: 2909-2916, 2001.
17. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17: 1503-1520, 2006.
18. Eis V, Luckow B, Vielhauer V, Siveke JT, Linde Y, Segerer S, Perez De Lema G, Cohen CD, Kretzler M, Mack M, Horuk R, Murphy PM, Gao JL, Hudkins KL, Alpers CE, Grone HJ, Schlondorff D, and Anders HJ. Chemokine receptor CCR1 but not CCR5 mediates leukocyte recruitment and subsequent renal fibrosis after unilateral ureteral obstruction. J Am Soc Nephrol 15: 337-347, 2004.
19. Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, and Nyren O. Obesity and risk for chronic renal failure. J Am Soc Nephrol 17: 1695-1702, 2006.
20. Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H, Ishiwata Y, Asano M, Wang H, Matsushima K, Takeya M, Kuziel WA, Mukaida N, and Yokoyama H. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14: 2503-2515, 2003.
21. Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, and Murphy PM. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203: 35-40, 2006.
22. Hafner S, Hillenbrand A, Knippschild U, and Radermacher P. The obesity paradox and acute kidney injury: beneficial effects of hyper-inflammation? Crit Care 17: 1023, 2013.
23. Hariri N, and Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev 23: 270-299, 2010.
24. Harrington M, Gibson S, and Cottrell RC. A review and meta-analysis of the effect of weight loss on all-cause mortality risk. Nutr Res Rev 22: 93-108, 2009.
25. Heo JM, Kim JC, Hansen CF, Mullan BP, Hampson DJ, and Pluske JR. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch Anim Nutr 62: 343-358, 2008.
26. Horne KL, Packington R, Monaghan J, Reilly T, and Selby NM. Three-year outcomes after acute kidney injury: results of a prospective parallel group cohort study. BMJ Open 7: e015316, 2017.
27. Johnson FL, Patel NSA, Purvis GSD, Chiazza F, Chen J, Sordi R, Hache G, Merezhko VV, Collino M, Yaqoob MM, and Thiemermann C. Inhibition of IkappaB kinase at 24 hours after acute kidney injury improves recovery of renal function and sttenuates fibrosis. J Am Heart Assoc 6: 2017.
28. Jones J, Holmen J, De Graauw J, Jovanovich A, Thornton S, and Chonchol M. Association of complete recovery from acute kidney injury with incident CKD stage 3 and all-cause mortality. Am J Kidney Dis 60: 402-408, 2012.
29. Kane-Gill SL, Sileanu FE, Murugan R, Trietley GS, Handler SM, and Kellum JA. Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am J Kidney Dis 65: 860-869, 2015.
30. Kaplan NM. The deadly quartet: upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1514-1520, 1989.
31. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014: 943162, 2014.
32. Ko GJ, Linfert D, Jang HR, Higbee E, Watkins T, Cheadle C, Liu M, Racusen L, Grigoryev DN, and Rabb H. Transcriptional analysis of infiltrating T cells in kidney ischemia-reperfusion injury reveals a pathophysiological role for CCR5. Am J Physiol Renal Physiol 302: F762-773, 2012.
33. Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, and Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol 5: 470, 2014.
34. Lee DH, Park MH, Hwang CJ, Hwang JY, Yoon HS, Yoon DY, and Hong JT. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury. Arch Toxicol 90: 1151-1162, 2016.
35. Li L, and Okusa MD. Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists. Nat Clin Pract Nephrol 2: 432-444, 2006.
36. Liu J, Kumar S, Dolzhenko E, Alvarado GF, Guo J, Lu C, Chen Y, Li M, Dessing MC, Parvez RK, Cippa PE, Krautzberger AM, Saribekyan G, Smith AD, and McMahon AP. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2: 2017.
37. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, and Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367-377, 1996.
38. Lopes JA, and Jorge S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J 6: 8-14, 2013.
39. MacLaughlin HL, Blacklock RM, Wright K, Pot G, Jayawardene S, McIntyre CW, Macdougall IC, and Selby NM. Obesity and recovery from acute kidney injury (Ob AKI): a prospective cohort feasibility study. BMJ Open 9: e024033, 2019.
40. Maric C, Sandberg K, and Hinojosa-Laborde C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat. J Am Soc Nephrol 15: 1546-1556, 2004.
41. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, and Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419, 1985.
42. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, and Barasch J. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115: 610-621, 2005.
43. Myers J, Lata K, Chowdhury S, McAuley P, Jain N, and Froelicher V. The obesity paradox and weight loss. Am J Med 124: 924-930, 2011.
44. Nakamura K, Kido J, Mitsubuchi H, and Endo F. Diagnosis and treatment of urea cycle disorder in Japan. Pediatr Int 56: 506-509, 2014.
45. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, Peyot ML, and Prentki M. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 55 Suppl 2: S16-23, 2006.
46. Parikh CR, and Devarajan P. New biomarkers of acute kidney injury. Crit Care Med 36: S159-165, 2008.
47. Rao K, Sethi K, Ischia J, Gibson L, Galea L, Xiao L, Yim M, Chang M, Papa N, Bolton D, Shulkes A, Baldwin GS, and Patel O. Protective effect of zinc preconditioning against renal ischemia reperfusion injury is dose dependent. PLoS One 12: e0180028, 2017.
48. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37: 1595-1607, 1988.
49. Rehman K, and Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 23: 87, 2016.
50. Rochlani Y, Pothineni NV, Kovelamudi S, and Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 11: 215-225, 2017.
51. Rogero MM, and Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 10: 2018.
52. Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, and Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 30: 219-225, 1981.
53. Schiff H. Eine neue reihe organischer diamine. Justus Liebigs Ann Chemie 92-137, 1886.
54. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, and Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 18: 407-413, 2007.
55. Selby NM, Fluck RJ, Kolhe NV, and Taal MW. International criteria for acute kidney injury: advantages and remaining challenges. PLoS Med 13: e1002122, 2016.
56. Shoelson SE, Lee J, and Goldfine AB. Inflammation and insulin resistance. J Clin Invest 116: 1793-1801, 2006.
57. Sileanu FE, Murugan R, Lucko N, Clermont G, Kane-Gill SL, Handler SM, and Kellum JA. AKI in low-risk versus high-risk patients in intensive care. Clin J Am Soc Nephrol 10: 187-196, 2015.
58. Sung FL, Zhu TY, Au-Yeung KK, Siow YL, and O K. Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-kappaB. Kidney Int 62: 1160-1170, 2002.
59. Supiano MA, Hogikyan RV, Morrow LA, Ortiz-Alonso FJ, Herman WH, Bergman RN, and Halter JB. Hypertension and insulin resistance: role of sympathetic nervous system activity. Am J Physiol 263: E935-942, 1992.
60. Sutton TA, Fisher CJ, and Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62: 1539-1549, 2002.
61. Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, Nameta M, Yamamoto T, Economides AN, Kohno K, Haga H, Sharma K, and Yanagita M. Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol 27: 2393-2406, 2016.
62. Tanaka S, Tanaka T, and Nangaku M. Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 307: F1187-1195, 2014.
63. Tsutahara K, Okumi M, Kakuta Y, Abe T, Yazawa K, Miyagawa S, Matsunami K, Otsuka H, Kaimori J, Takahara S, and Nonomura N. The blocking of CXCR3 and CCR5 suppresses the infiltration of T lymphocytes in rat renal ischemia reperfusion. Nephrol Dial Transplant 27: 3799-3806, 2012.
64. Udi S, Hinden L, Earley B, Drori A, Reuveni N, Hadar R, Cinar R, Nemirovski A, and Tam J. Proximal tubular cannabinoid-1 receptor regulates obesity-Induced CKD. J Am Soc Nephrol 28: 3518-3532, 2017.
65. Wang L, Zhu Y, Wang L, Hou J, Gao Y, Shen L, and Zhang J. Effects of chronic alcohol exposure on ischemia-reperfusion-induced acute kidney injury in mice: the role of beta-arrestin 2 and glycogen synthase kinase 3. Exp Mol Med 49: e347, 2017.
66. Wei Q, and Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 303: F1487-1494, 2012.
67. Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, and Tsuji Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol Med 22: 1077-1090, 2016.
68. Yokota LG, Sampaio BM, Rocha EP, Balbi AL, Sousa Prado IR, and Ponce D. Acute kidney injury in elderly patients: narrative review on incidence, risk factors, and mortality. Int J Nephrol Renovasc Dis 11: 217-224, 2018.
69. Yu TM, Palanisamy K, Sun KT, Day YJ, Shu KH, Wang IK, Shyu WC, Chen P, Chen YL, and Li CY. RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1alpha and LncRNA PRINS. Sci Rep 6: 18424, 2016.
電子全文 電子全文(網際網路公開日期:20250211)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔