跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙培均
研究生(外文):Pei-Chun Chao
論文名稱:字形一致性及形音對應一致性對中文語音辨識影響之神經機制
論文名稱(外文):Neural mechanisms underlying the bidirectional mapping consistency between orthography and phonology on Chinese spoken word recognition
指導教授:李佳穎李佳穎引用關係
指導教授(外文):Chia-Ying Lee
學位類別:博士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:128
中文關鍵詞:字形一致性形音對應一致性中文口語辨識功能性磁振造影事件相關電位腦磁波
外文關鍵詞:phonology-to-orthography mapping consistencyorthography-to-phonology mapping consistencyChinese spoken word recognitionfMRIERPMEG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
音形對應一致性效果穩定的出現在口語辨識作業中,此結果支持了閱讀的經驗會影響到語音處理。然而,此效果是導因於字形表徵於顳枕視覺皮質區的共同激發或是文字學習在聽覺神經網路區對既有語音表徵的重新建構,至今仍未有定論。此外,目前也不清楚形音一致性效果是否也存在於口語辨識中。超過80%中文語音可以對應到多個字形,因此,相較於拼音文字, 同音字眾多的特性讓音形對應一致性在中文口語辨識中或許更能彰顯其影響。過去事件相關電位的研究已指出有兩種音形對應一致性效應會影響中文口語辨識:音形一致性(同音字是否有相同音旁)和同音字密度(字音可以對應到字的多寡)。實驗一和實驗二旨在運用功能性磁振造影,探討中文音形一致性和同音字密度效果在語意和押韻判斷作業下影響口語辨識的神經機制。結果顯示音形一致性效果在兩個作業下皆出現在聽覺神經網路區,包含額下迴、顳上迴及腦島,表示次字彙(sublexical)層次的字形對既有語音表徵產生重新架構的作用。然而,同音字密度效果只在語意判斷作業下出現在顳枕視覺皮質區,表示整字層次的字形會在口語辨識中同時激發。實驗三和四利用事件相關電位和腦磁波探討中文形音一致性(相同音旁的字是否有相同發音)在口語辨識中所扮演的角色,和所涉及的腦區活動隨時間變化的情況,以及如何受到同音字密度的影響。結果發現形音一致性效果發生在N400以及左側額下、顳頂和枕顳區域,並同時受到同音字密度的影響。另外,700毫秒以後,形音一致性效果也發生在涉及形音對應處理的腦區。同音字密度效果則發生在LPC和枕顳交界處。聽覺作業下的形音一致性效應支持了被激發字形本身與字音對應一致性也會影響到口語辨識。總結來說,本篇論文提供了趨於一致的證據支持了中文口語辨識會受到字形與字音雙向的對應一致性的影響。
The phonology-to-orthography (P-to-O) mapping consistency effect on spoken word recognition is a well-established phenomenon to support that reading experience shapes the speech processing. However, the issue under debate is whether the P-to-O consistency effect was resulted from the orthographic co-activation located in temporo-occipital visual cortex or the phonological restructuring located within the speech network. Meanwhile, it is also unclear whether the second-ordered effect, the orthography-to-phonology (O-to-P) mapping consistency, could be evident in spoken word recognition. In Chinese, over 80% of Mandarin syllables can be mapped onto multiple characters. Given the pervasive homophony of Chinese, one might expect a greater impact from orthography during speech in Chinese than that in alphabetic writing system. Two types of orthographic effect have been demonstrated in Chinese spoken word recognition with ERP (Chen et al., 2016). One is the P-to-O consistency (POC, whether a set of homophones can be divided into subgroups based on their phonetic radicals) and the other one is the homophone density for the mapping between phonology and orthography (HD, the number of characters sharing exactly the same pronunciation). Experiments 1 and 2 aimed to examine the neural mechanism underlying the two types of orthographic effects on Chinese spoken language under the semantic category and the rhyming judgment tasks with the event-related fMRI. The POC effects were observed within the perisylvian speech network, including inferior frontal gyrus (IFG), superior temporal gyrus (STG), and insula, in both tasks. The finding suggests that the sublexical orthographic information could restructure the preexisting phonological representations. In contrast, the HD effects in the left fusiform and lingual gyrus were only evident in the semantic judgment task, suggesting that the lexical orthographic knowledge may be activated on-line during spoken word recognition. Experiment 3 and 4 applied the ERP and magnetoencephalography (MEG) to identify the temporal and spatial loci of the second-order O-to-P consistency (OPC, the reliability of a phonetic radical in providing the whole character’s phonological clue) on Chinese spoken word recognition and to explore when and how this effect interacts with the first-order P-to-O mapping (i.e., HD). The OPC effect was modulated by HD during the N400 time window in the left inferior frontal, temporoparietal, and occipitotemporal regions. Moreover, the MEG data additionally revealed a later OPC effect in the activity of a set of brain regions that involved in statistical mapping between orthography and phonology after ~700 ms. The HD effects were found in the LPC time window (700-900 ms) in the left lingual gyrus. The second-order O-to-P consistency effect in the auditory modality supports the reverberation between orthography and phonology in Chinese spoken word recognition. Taken together, the dissertation provides convergent evidence to support that Chinese spoken word recognition can be influenced by the bidirectional mapping consistency between orthography and phonology.
中文摘要 i
Abstract ii
Table of Content iv
List of Tables vii
List of Figures ix
1 Introduction 1
1.1 The bimodal interactive activation model (BIAM) for word recognition 2
1.2 The temporal locus of the P-to-O consistency effect 5
1.3 Phonological restructuring versus orthographic co-activation 9
1.4 The neural correlates of the P-to-O consistency effect 10
1.5 The second-order O-to-P consistency effect in the spoken word recognition 12
1.6 The implement of the cross-code consistency framework in Chinese 14
1.7 Aims of the dissertation 17
2 Experiment 1: Neuronal correlates of P-to-O consistency effects on Chinese spoken word recognition 19
2.1 Introduction 19
2.2 Methods 20
2.2.1 Participants 20
2.2.2 Experimental Design 21
2.2.3 Procedures 22
2.2.4 MRI data acquisition 22
2.2.5 FMRI data preprocessing and statistical analysis 23
2.2.6 Functional connectivity analysis: gPPI 24
2.3 Results 25
2.3.1 FMRI data 25
2.3.2 Functional connectivity data 27
2.4 Discussion 31
2.4.1 Chinese orthographic effects on brain function 31
2.4.2 Chinese orthographic effects on functional connectivity 34
2.5 Conclusion 35
3 Experiment 2: Orthographic influences on Chinese spoken language in the brain: task-specific consistency effects as revealed by event-related fMRI 36
3.1 Introduction 36
3.2 Methods 37
3.2.1 Participants 37
3.2.2 Experimental Design 37
3.2.3 Procedures 39
3.2.4 MRI data acquisition and analysis 39
3.2.5 FMRI data preprocessing and statistical analysis 40
3.2.6 Functional connectivity analysis: gPPI 41
3.3 Results 41
3.3.1 Behavioral data 41
3.3.2 FMRI data 42
3.3.3 Functional connectivity data 44
3.4 Discussion 47
3.5 Conclusion 49
4 Experiment 3: The second-order effect of orthography-to-phonology mapping consistency on Chinese spoken word recognition 51
4.1 Introduction 51
4.2 Experiment 3-1: norming study 53
4.2.1 Methods 53
4.2.2 Results 58
4.2.3 Discussion 63
4.3 Experiment 3-2: ERP study 66
4.3.1 Methods 67
4.3.2 Results 72
4.3.3 Discussion 77
4.4 General Discussion 79
5 Experiment 4: Spatial and temporal dynamics of homophone density and orthography-to-phonology mapping consistency effects in writing Chinese characters: an MEG study 81
5.1 Introduction 81
5.2 Methods 82
5.2.1 Participants 82
5.2.2 Experimental Design 82
5.2.3 Procedures 83
5.2.4 Data acquisition 84
5.2.5 MEG data preprocessing and EEMD decomposition 84
5.2.6 Sensor-Level Statistics 85
5.2.7 Source analysis 87
5.2.8 Regions of interests (ROIs) and statistical analysis 87
5.3 Results 89
5.3.1 Behavioral results 89
5.3.2 MEG sensor data 90
5.3.3 The dynamic statistical parametric maps data 90
5.3.4 Results of ROI analyses 92
5.4 Discussion 94
5.5 Conclusion 98
6 General discussion 99
6.1 Summary of overall results 99
6.2 The implications of the bimodal interactive activation model (BIAM) for Chinese spoken word recognition 100
6.3 The role of ventral occipitotemporal cortex in Chinese spoken word recognition 105
6.4 Functional interactions of the left inferior frontal cortex during Chinese spoken word recognition 107
6.5 Limitations and future direction 110
References 112
Table 2.1 Means and standard deviations of parameters for stimuli. 22
Table 2.2 Peak activation of the contrasts for HD and POC effects 26
Table 2.3 Brain regions showing stronger connectivity with the left pars opercularis (pOper) seed for the HD and POC effects. 28
Table 2.4 Brain regions showing stronger connectivity with the left pars triangularis (pTri) seed for the HD and POC effects. 29
Table 2.5 Brain regions showing stronger connectivity with the left pars orbitalis (pOrb) seed for the HD and POC effects. 30
Table 3.1 Means and standard deviations of parameters for stimuli. 38
Table 3.2 Means and standard deviations of parameters for paired characters 38
Table 3.3 Means and standard deviations of the reaction times (ms) and accuracy (%) for each condition. 42
Table 3.4 Linear mixed model (LMM) estimates of the fixed effects for (A) reaction times and (B) accuracy. 42
Table 3.5 Peak activation of contrasts for the POC effect 43
Table 3.6 Brain regions showing stronger connectivity with the left pOper seed for the HD and POC effects 45
Table 3.7 Brain regions showing stronger connectivity with the left pTri seed for the HD and POC effects. 46
Table 3.8 Brain regions showing stronger connectivity with the left pOrb seed for the HD and POC effects. 47
Table 4.1 Normative data of the norm for generation probability (%). 56
Table 4.2 Means, standard deviations, and correlation coefficients of the predictors for generation probability and reaction time. 59
Table 4.3 Linear mixed model estimates of the fixed effects for (A) generation probability and (B) reaction time. 62
Table 4.4 Means and standard deviations of the accuracy (%) of written responses in each condition. 72
Table 4.5 Linear mixed model estimates of the fixed effects for (A) accuracy and (B) generation probability in the ERP study. 73
Table 4.6 Linear mixed model estimates of fixed effects for the average amplitudes in P200 (245–295 ms), N400 (450–650 ms) and the LPC (700–900 ms). 74

Table 5.1 Means and standard deviations of the accuracy (%) of written responses in each condition. 89
Table 5.2 Linear mixed model estimates (LMM) of the fixed effects for (A) accuracy and (B) generation probability in the MEG study. 89
Table 5.3 LMM estimates of fixed effects for significant effects of the interaction between HD and O-to-P consistency (OPC) in (a) 450 ms - 650 ms and (b) 700 ms - 900 ms and a significant effect of HD in (b) 700 ms - 900 ms time windows 90
Table 5.4 Summary of ROI analysis 92
Table 6.1 Temporal and Spatial results of the sublexical bidirectional mappings between phonology and orthography. 102
Table 6.2 Temporal and Spatial results of the lexical mappings between phonology and orthography. 104
Figure 1.1 The architecture of the bimodal interactive activation model (BIAM) for word recognition and the schema for bi-directional activation between orthography and phonology. 2
Figure 1.2 Examples for O-to-P consistency in English. 3
Figure 1.3 Examples for P-to-O consistency in English. 4
Figure 1.4 Examples for the bidirectional mapping consistency between orthography and phonology in English and Chinese (C. Y. Lee et al., 2015). 16
Figure 2.1 Activation maps for (A) three phonology-to-orthography (P-to-O) mapping conditions (P < 0.05, FWE-corrected) and the contrasts for (B) HD effects (P < 0.001, uncorrected) and (C) POC effects (P < 0.005, uncorrected) 25
Figure 2.2 Results of the gPPI analysis across the three conditions for the seed regions including the left pars opercularis (pOper), pars triangularis (pTri) and pars orbitalis (pOrb) of inferior frontal gyrus (IFG) (P < 0.05, FWE-corrected). 28
Figure 3.1 Activation maps for (A) three P-to-O mapping conditions (P < 0.05, FWE-corrected) and the contrasts for (B) POC effects (P < 0.001, uncorrected). 43
Figure 3.2 Results of the gPPI analysis across three treatments for the seed regions of the left pars opercularis (pOper), pars triangularis (pTri), pars orbitalis (pOrb) of the IFG (P < 0.05, FWE-corrected). 44
Figure 4.1 ERMs for high O-to-P consistency characters (high OP, solid lines) and low O-to-P consistency characters (low OP, dashed lines) at the represented electrodes under (a) low homophone density (low HD) and (b) high homophone density (high HD) conditions. 75
Figure 4.2 ERMs for the high homophone density condition (high HD, solid lines) and low homophone density condition (low HD, dashed lines) at the represented electrodes. 76
Figure 5.1 Topographic maps and averaged waveforms for four conditions over the selected sensors. White dots represent the sensors that showed significant effects of the interaction between homophone density (HD) and O-to-P consistency (OP) in the time windows (a) form 450 ms to 650 ms and (b) from 700 ms to 900 ms and a significant effect of HD in the time windows (c) from 700 ms to 900 ms. 86
Figure 5.2 The anatomical locations for regions of interest (ROIs) in the inflated (left) and pial (right) views of the automated anatomical parcellation (Destrieux et al., 2010). 88
Figure 5.3 The averaged dSPMs for each condition across all participants in the left hemispheres shown at 50 ms intervals from 300 ms to 1000 ms. 91

Figure 5.4 Bar plots of the averaged dSPMs within ROIs for the significant effects of (a) interaction between HD and O-to-P consistency (OP), (b) homophone density and (c) O-to-P consistency. 93
Figure 6.1 The interactive-activation framework for Chinese spoken words. The example of the monosyllabic Chinese spoken word cāng is used to illustrate the sublexical/lexical division imposed on orthographic and phonological representations. 100
Figure 6.2 (a) Results of the gPPI analysis regardless the conditions for the seed regions including the left pars opercularis (pOper), pars triangularis (pTri) and pars orbitalis (pOrb) of inferior frontal gyrus (IFG) in Experiments 1 and 2 (P < 0.0001, FWE-corrected, voxel size > 100). (b) Simplified illustration of the anatomy and connectivity of the left hemisphere language network (Hagoort, 2016). (c) The topographical connectivity pattern between frontal and temporal/parietal cortex in the perisylvian language networks (Hagoort, 2016; Xiang et al., 2010). 109
Adams, R. B., & Janata, P. (2002). A comparison of neural circuits underlying auditory and visual object categorization. Neuroimage, 16(2), 361-377. doi:10.1006/nimg.2002.1088
Al-Subari, K., Al-Baddai, S., Tome, A. M., Volberg, G., Hammwohner, R., & Lang, E. W. (2015). Ensemble Empirical Mode Decomposition Analysis of EEG Data Collected during a Contour Integration Task. PLoS One, 10(4), e0119489.
Andrews, S. (1989). Frequency and Neighborhood Effects on Lexical Access - Activation or Search. Journal of Experimental Psychology-Learning Memory and Cognition, 15(5), 802-814. doi:Doi 10.1037/0278-7393.15.5.802
Andrews, S. (1997). The effect of orthographic similarity on lexical retrieval: Resolving neighborhood conflicts. Psychonomic Bulletin & Review, 4(4), 439-461. doi:Doi 10.3758/Bf03214334
Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D., & Knosche, T. R. (2007). Connectivity-Based Parcellation of Broca's Area. Cereb Cortex, 17(4), 816-825. doi:10.1093/cercor/bhk034
Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R: Cambridge University Press.
Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907-918. doi:10.1016/j.neuron.2005.07.023
Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2015). Tracking lexical consolidation with ERPs: Lexical and semantic-priming effects on N400 and LPC responses to newly-learned words. Neuropsychologia, 79(Pt A), 33-41. doi:10.1016/j.neuropsychologia.2015.10.020
Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. (2004). Visual word recognition of single-syllable words. J Exp Psychol Gen, 133(2), 283-316. doi:10.1037/0096-3445.133.2.283
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Statistical Methodology, 57(1), 289-300.
Bentin, S., Kutas, M., & Hillyard, S. A. (1993). Electrophysiological evidence for task effects on semantic priming in auditory word processing. Psychophysiology, 30(2), 161-169. doi:10.1111/j.1469-8986.1993.tb01729.x
Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision and semantic priming. Electroencephalogr Clin Neurophysiol, 60(4), 343-355. doi:10.1016/0013-4694(85)90008-2
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends Cogn Sci, 15(11), 527-536. doi:10.1016/j.tics.2011.10.001
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex, 19(12), 2767-2796.
Bokde, A. L., Tagamets, M. A., Friedman, R. B., & Horwitz, B. (2001). Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli. Neuron, 30(2), 609-617. doi:10.1016/s0896-6273(01)00288-4
Bonin, P., & Fayol, M. (2002). Frequency effects in the written and spoken production of homophonic picture names. European Journal of Cognitive Psychology, 14(3), 289-313. doi:10.1080/09541440143000078
Bonin, P., & Meot, A. (2002). Writing to dictation in real time in adults: What are the determinants of written latencies. Advances in psychology research, 16, 139-165.
Bonin, P., Peereman, R., & Fayol, M. (2001). Do phonological codes constrain the selection of orthographic codes in written picture naming? Journal of Memory and Language, 45(4), 688-720.
Bookheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci, 25(1), 151-188. doi:10.1146/annurev.neuro.25.112701.142946
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. F., Parrish, T. B., & Mesulam, M. M. (2003). Relation between brain activation and lexical performance. Human brain mapping, 19(3), 155-169. doi:10.1002/hbm.10111
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2002). Functional anatomy of intra- and cross-modal lexical tasks. Neuroimage, 16(1), 7-22. doi:10.1006/nimg.2002.1081
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2004). Development of brain mechanisms for processing orthographic and phonologic representations. J Cogn Neurosci, 16(7), 1234-1249. doi:10.1162/0898929041920496
Booth, J. R., Cho, S., Burman, D. D., & Bitan, T. (2007). Neural correlates of mapping from phonology to orthography in children performing an auditory spelling task. Dev Sci, 10(4), 441-451. doi:10.1111/j.1467-7687.2007.00598.x
Booth, J. R., Mehdiratta, N., Burman, D. D., & Bitan, T. (2008). Developmental increases in effective connectivity to brain regions involved in phonological processing during tasks with orthographic demands. Brain Res, 1189, 78-89. doi:10.1016/j.brainres.2007.10.080
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychol Rev, 108(3), 624-652.
Bozic, M., Tyler, L. K., Ives, D. T., Randall, B., & Marslen-Wilson, W. D. (2010). Bihemispheric foundations for human speech comprehension. Proc Natl Acad Sci U S A, 107(40), 17439-17444. doi:10.1073/pnas.1000531107
Braun, M., Jacobs, A. M., Richlan, F., Hawelka, S., Hutzler, F., & Kronbichler, M. (2015a). Many neighbors are not silent. fMRI evidence for global lexical activity in visual word recognition. Frontiers in human neuroscience, 9.
Braun, M., Jacobs, A. M., Richlan, F., Hawelka, S., Hutzler, F., & Kronbichler, M. (2015b). Many neighbors are not silent. fMRI evidence for global lexical activity in visual word recognition. Frontiers in human neuroscience, 9, 423.
Bruno, J. L., Zumberge, A., Manis, F. R., Lu, Z. L., & Goldman, J. G. (2008). Sensitivity to orthographic familiarity in the occipito-temporal region. Neuroimage, 39(4), 1988-2001. doi:10.1016/j.neuroimage.2007.10.044
Buchsbaum, B. R., & D'Esposito, M. (2009). Repetition suppression and reactivation in auditory-verbal short-term recognition memory. Cereb Cortex, 19(6), 1474-1485. doi:10.1093/cercor/bhn186
Buckner, R. L., Raichle, M. E., & Petersen, S. E. (1995). Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurophysiol, 74(5), 2163-2173. doi:10.1152/jn.1995.74.5.2163
Burton, M. W., Locasto, P. C., Krebs-Noble, D., & Gullapalli, R. P. (2005). A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. Neuroimage, 26(3), 647-661. doi:10.1016/j.neuroimage.2005.02.024
Cao, F., Khalid, K., Lee, R., Brennan, C., Yang, Y., Li, K., . . . Booth, J. R. (2011). Development of brain networks involved in spoken word processing of Mandarin Chinese. Neuroimage, 57(3), 750-759. doi:10.1016/j.neuroimage.2010.09.047
Cao, F., Khalid, K., Zaveri, R., Bolger, D. J., Bitan, T., & Booth, J. R. (2010). Neural correlates of priming effects in children during spoken word processing with orthographic demands. Brain Lang, 114(2), 80-89. doi:10.1016/j.bandl.2009.07.005
Carrasco-Ortiz, H., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2017). Interactions in the neighborhood: Effects of orthographic and phonological neighbors on N400 amplitude. Journal of Neurolinguistics, 41, 1-10. doi:10.1016/j.jneuroling.2016.06.007
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. science, 280(5364), 747-749.
Chang, Y. N., Hsu, C. H., Tsai, J. L., Chen, C. L., & Lee, C. Y. (2016). A psycholinguistic database for traditional Chinese character naming. Behav Res Methods, 48(1), 112-122. doi:10.3758/s13428-014-0559-7
Chao, P. C., Chen, W. F., & Lee, C. Y. (2019). The second-order effect of orthography-to-phonology mapping consistency on Chinese spoken word recognition. Journal of Neurolinguistics, 51, 1-16. doi:10.1016/j.jneuroling.2018.11.002
Chen, H. C., Vaid, J., & Wu, J. T. (2009). Homophone density and phonological frequency in Chinese word recognition. Language and Cognitive Processes, 24(7-8), 967-982. doi:10.1080/01690960902804515
Chen, W. F. (2011). Event-Related Potentials studies for the Orthographic Consistency effects on Chinese spoken word recognition. (Master's thesis), National Chengchi University, Taipei, Taiwan. Retrieved from https://hdl.handle.net/11296/3tawvw
Chen, W. F., Chao, P. C., Chang, Y. N., Hsu, C. H., & Lee, C. Y. (2016). Effects of orthographic consistency and homophone density on Chinese spoken word recognition. Brain Lang, 157-158, 51-62. doi:10.1016/j.bandl.2016.04.005
Chereau, C., Gaskell, M. G., & Dumay, N. (2007). Reading spoken words: orthographic effects in auditory priming. Cognition, 102(3), 341-360. doi:10.1016/j.cognition.2006.01.001
Chiu, Y. S., Kuo, W. J., Lee, C. Y., & Tzeng, O. J. L. (2016). The Explicit and Implicit Phonological Processing of Chinese Characters and Words in Taiwanese Deaf Signers. Language and Linguistics, 17(1), 63-87. doi:10.1177/1606822x15614518
Cohen, L., Jobert, A., Le Bihan, D., & Dehaene, S. (2004). Distinct unimodal and multimodal regions for word processing in the left temporal cortex. Neuroimage, 23(4), 1256-1270. doi:10.1016/j.neuroimage.2004.07.052
Cone, N. E., Burman, D. D., Bitan, T., Bolger, D. J., & Booth, J. R. (2008). Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. Neuroimage, 41(2), 623-635. doi:10.1016/j.neuroimage.2008.02.055
Cong, F., Sipola, T., Huttunen-Scott, T., Xu, X., Ristaniemi, T., & Lyytinen, H. (2009). Hilbert-Huang versus Morlet wavelet transformation on mismatch negativity of children in uninterrupted sound paradigm. Nonlinear Biomed Phys, 3(1), 1. doi:10.1186/1753-4631-3-1
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179-194. doi:10.1006/nimg.1998.0395
Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren, E. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26(1), 55-67.
Dale, A. M., & Sereno, M. I. (1993). Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. J Cogn Neurosci, 5(2), 162-176. doi:10.1162/jocn.1993.5.2.162
Davies, R. A., & Weekes, B. S. (2005). Effects of feedforward and feedback consistency on reading and spelling in dyslexia. Dyslexia, 11(4), 233-252.
Davis, M. H., Coleman, M. R., Absalom, A. R., Rodd, J. M., Johnsrude, I. S., Matta, B. F., . . . Menon, D. K. (2007). Dissociating speech perception and comprehension at reduced levels of awareness. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16032-16037. doi:10.1073/pnas.0701309104
De Cheveigné, A., & Simon, J. Z. (2007). Denoising based on time-shift PCA. Journal of neuroscience methods, 165(2), 297-305.
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384-398. doi:10.1016/j.neuron.2007.10.004
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends Cogn Sci, 15(6), 254-262. doi:10.1016/j.tics.2011.04.003
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nat Rev Neurosci, 16(4), 234-244. doi:10.1038/nrn3924
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: a proposal. Trends Cogn Sci, 9(7), 335-341. doi:10.1016/j.tics.2005.05.004
Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., & Riviere, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nat Neurosci, 4(7), 752-758. doi:10.1038/89551
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes, G., Jobert, A., . . . Cohen, L. (2010). How Learning to Read Changes the Cortical Networks for Vision and Language. science, 330(6009), 1359-1364. doi:10.1126/science.1194140
Delattre, M., Bonin, P., & Barry, C. (2006). Written spelling to dictation: Sound-to-spelling regularity affects both writing latencies and durations. Journal of Experimental Psychology-Learning Memory and Cognition, 32(6), 1330-1340. doi:10.1037/0278-7393.32.6.1330
Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 1-15. doi:10.1016/j.neuroimage.2010.06.010
Dich, N. (2011). Individual differences in the size of orthographic effects in spoken word recognition: The role of listeners' orthographic skills. Applied Psycholinguistics, 32(1), 169-186. doi:10.1017/S0142716410000330
Ehri, L. C. (1992). Reconceptualizing the development of sight word reading and its relationship to recoding: Lawrence Erlbaum Associates, Inc.
Ehri, L. C., & Wilce, L. S. (1980). The Influence of Orthography on Readers Conceptualization of the Phonemic Structure of Words. Applied Psycholinguistics, 1(4), 371-385. doi:Doi 10.1017/S0142716400009802
Elmer, S., Meyer, M., Marrama, L., & Jancke, L. (2011). Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. Eur J Neurosci, 34(1), 165-175. doi:10.1111/j.1460-9568.2011.07728.x
Fang, S.-P., Horng, R.-Y., & Tzeng, O. J. (1986). Consistency effects in the Chinese character and pseudo-character naming tasks. Linguistics, psychology, and the Chinese language, 11-21.
Ferrand, L., & Grainger, J. (1992). Phonology and orthography in visual word recognition: evidence from masked non-word priming. Q J Exp Psychol A, 45(3), 353-372.
Fiez, J. A. (1997). Phonology, semantics, and the role of the left inferior prefrontal cortex. Hum Brain Mapp, 5(2), 79-83.
Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (1999). Effects of lexicality, frequency, and spelling-to-sound consistency on the functional anatomy of reading. Neuron, 24(1), 205-218.
Forster, K. I., & Shen, D. (1996). No enemies in the neighborhood: Absence of inhibitory neighborhood effects in lexical decision and semantic categorization. Journal of Experimental Psychology-Learning Memory and Cognition, 22(3), 696-713. doi:Doi 10.1037/0278-7393.22.3.696
Friederici, A. D. (2009). Pathways to language: fiber tracts in the human brain. Trends Cogn Sci, 13(4), 175-181. doi:10.1016/j.tics.2009.01.001
Friedman, D., & Johnson, R., Jr. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: a selective review. Microsc Res Tech, 51(1), 6-28. doi:10.1002/1097-0029(20001001)51:1<6::AID-JEMT2>3.0.CO;2-R
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218-229. doi:10.1006/nimg.1997.0291
Frith, U. (1998). Literally changing the brain. Brain, 121 ( Pt 6)(6), 1011-1012. doi:10.1093/brain/121.6.1011
Frost, R., & Ziegler, J. C. (2007). Speech and spelling interaction: The interdependence of visual and auditory word recognition. The Oxford handbook of psycholinguistics, 107-118.
Glushko, R. J. (1979). The organization and activation of orthographic knowledge in reading aloud. Journal of Experimental Psychology: Human Perception and Performance, 5(4), 674.
Gold, B. T., Balota, D. A., Jones, S. J., Powell, D. K., Smith, C. D., & Andersen, A. H. (2006). Dissociation of automatic and strategic lexical-semantics: functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. J Neurosci, 26(24), 6523-6532. doi:10.1523/JNEUROSCI.0808-06.2006
Gold, B. T., Balota, D. A., Kirchhoff, B. A., & Buckner, R. L. (2005). Common and dissociable activation patterns associated with controlled semantic and phonological processing: evidence from FMRI adaptation. Cereb Cortex, 15(9), 1438-1450. doi:10.1093/cercor/bhi024
Gold, B. T., & Buckner, R. L. (2002). Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron, 35(4), 803-812. doi:10.1016/s0896-6273(02)00800-0
Gough, P. M., Nobre, A. C., & Devlin, J. T. (2005). Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci, 25(35), 8010-8016. doi:10.1523/JNEUROSCI.2307-05.2005
Grainger, J., Diependaele, K., Spinelli, E., Ferrand, L., & Farioli, F. (2003). Masked repetition and phonological priming within and across modalities. Journal of Experimental Psychology-Learning Memory and Cognition, 29(6), 1256-1269. doi:10.1037/0278-7393.29.6.1256
Grainger, J., & Ferrand, L. (1994). Phonology and Orthography in Visual Word Recognition - Effects of Masked Homophone Primes. Journal of Memory and Language, 33(2), 218-233. doi:DOI 10.1006/jmla.1994.1011
Grainger, J., & Ferrand, L. (1996). Masked orthographic and phonological priming in visual word recognition and naming: Cross-task comparisons. Journal of Memory and Language, 35(5), 623-647. doi:DOI 10.1006/jmla.1996.0033
Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: a multiple read-out model. Psychol Rev, 103(3), 518-565.
Grainger, J., O'Regan, J. K., Jacobs, A. M., & Segui, J. (1989). On the role of competing word units in visual word recognition: the neighborhood frequency effect. Percept Psychophys, 45(3), 189-195.
Grainger, J., & Ziegler, J. C. (2008). Cross-Code Consistency in a Functional Architecture for Word Recognition. Single-word Reading: Behavioral and Biological Perspectives, 129.
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., . . . Hamalainen, M. S. (2014). MNE software for processing MEG and EEG data. Neuroimage, 86, 446-460. doi:10.1016/j.neuroimage.2013.10.027
Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S., & Binder, J. R. (2010). Neural systems for reading aloud: a multiparametric approach. Cereb Cortex, 20(8), 1799-1815. doi:10.1093/cercor/bhp245
Hagoort, P. (2016). MUC (Memory, Unification, Control): A model on the neurobiology of language beyond single word processing Neurobiology of language (pp. 339-347): Elsevier.
Han, Z. Z., Song, L. P., & Bi, Y. C. (2012). Cognitive mechanism of writing to dictation of logographic characters. Applied Psycholinguistics, 33(3), 517-537. doi:10.1017/S0142716411000464
Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends Cogn Sci, 4(4), 131-138.
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 67-99. doi:10.1016/j.cognition.2003.10.011
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1), 67-99.
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393-402. doi:10.1038/nrn2113
Holcomb, P. J. (1988). Automatic and attentional processing: an event-related brain potential analysis of semantic priming. Brain Lang, 35(1), 66-85. doi:10.1016/0093-934x(88)90101-0
Holcomb, P. J. (1993). Semantic priming and stimulus degradation: implications for the role of the N400 in language processing. Psychophysiology, 30(1), 47-61. doi:10.1111/j.1469-8986.1993.tb03204.x
Holcomb, P. J., Grainger, J., & O'Rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. J Cogn Neurosci, 14(6), 938-950. doi:10.1162/089892902760191153
Holcomb, P. J., & Neville, H. J. (1990). Auditory and Visual Semantic Priming in Lexical Decision - a Comparison Using Event-Related Brain Potentials. Language and Cognitive Processes, 5(4), 281-312. doi:Doi 10.1080/01690969008407065
Hoshino, N., & Thierry, G. (2012). Do Spanish–English bilinguals have their fingers in two pies–or is it their toes? An electrophysiological investigation of semantic access in bilinguals. Front Psychol, 3, 52-57.
Hsu, C. H., Lee, C. Y., & Liang, W. K. (2016). An improved method for measuring mismatch negativity using ensemble empirical mode decomposition. J Neurosci Methods, 264, 78-85. doi:10.1016/j.jneumeth.2016.02.015
Hsu, C. H., Lee, C. Y., & Tzeng, O. J. (2014). Early MEG markers for reading Chinese phonograms: evidence from radical combinability and consistency effects. Brain Lang, 139, 1-9. doi:10.1016/j.bandl.2014.09.008
Hsu, C. H., Tsai, J. L., Lee, C. Y., & Tzeng, O. J. (2009). Orthographic combinability and phonological consistency effects in reading Chinese phonograms: an event-related potential study. Brain Lang, 108(1), 56-66. doi:10.1016/j.bandl.2008.09.002
Huang, H. W., Lee, C. Y., Tsai, J. L., Lee, C. L., Hung, D. L., & Tzeng, O. J. (2006). Orthographic neighborhood effects in reading Chinese two-character words. Neuroreport, 17(10), 1061-1065. doi:10.1097/01.wnr.0000224761.77206.1d
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Paper presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences.
Hunter, C. R. (2016). Is the time course of lexical activation and competition in spoken word recognition affected by adult aging? An event-related potential (ERP) study. Neuropsychologia, 91, 451-464. doi:10.1016/j.neuropsychologia.2016.09.007
Jared, D. (1997). Spelling–sound consistency affects the naming of high-frequency words. Journal of Memory and Language, 36(4), 505-529.
Jared, D. (2002). Spelling-sound consistency and regularity effects in word naming. Journal of Memory and Language, 46(4), 723-750. doi:10.1006/jmla.2001.2827
Juottonen, K., Revonsuo, A., & Lang, H. (1996). Dissimilar age influences on two ERP waveforms (LPC and N400) reflecting semantic context effect. Brain Res Cogn Brain Res, 4(2), 99-107.
Kelly, C., Uddin, L. Q., Shehzad, Z., Margulies, D. S., Castellanos, F. X., Milham, M. P., & Petrides, M. (2010). Broca’s region: linking human brain functional connectivity data and non‐human primate tracing anatomy studies. European Journal of Neuroscience, 32(3), 383-398.
Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Muller, K., & Gruber, O. (2009). Functional architecture of verbal and tonal working memory: an FMRI study. Hum Brain Mapp, 30(3), 859-873. doi:10.1002/hbm.20550
Kronbichler, M., Bergmann, J., Hutzler, F., Staffen, W., Mair, A., Ladurner, G., & Wimmer, H. (2007). Taxi vs. taksi: on orthographic word recognition in the left ventral occipitotemporal cortex. J Cogn Neurosci, 19(10), 1584-1594. doi:10.1162/jocn.2007.19.10.1584
Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. Neuroimage, 21(3), 946-953.
Kuo, C. C., Lin, W. S., Dressel, C. A., & Chiu, A. W. (2011). Classification of intended motor movement using surface EEG ensemble empirical mode decomposition. Conf Proc IEEE Eng Med Biol Soc, 2011, 6281-6284. doi:10.1109/IEMBS.2011.6091550
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol, 62, 621-647. doi:10.1146/annurev.psych.093008.131123
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. science, 207(4427), 203-205. doi:10.1126/science.7350657
Kwon, Y., Nam, K., & Lee, Y. (2012). ERP index of the morphological family size effect during word recognition. Neuropsychologia, 50(14), 3385-3391. doi:10.1016/j.neuropsychologia.2012.09.041
Lacruz, I., & Folk, J. (2004). Feedforward and feedback consistency effects for high- and low-frequency words in lexical decision and naming. Q J Exp Psychol A, 57(7), 1261-1284. doi:10.1080/02724980343000756
Laszlo, S., & Federmeier, K. D. (2009). A Beautiful Day in the Neighborhood: An Event-Related Potential Study of Lexical Relationships and Prediction in Context. J Mem Lang, 61(3), 326-338. doi:10.1016/j.jml.2009.06.004
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci, 9(12), 920-933. doi:10.1038/nrn2532
Laurienti, P. J., Burdette, J. H., Wallace, M. T., Yen, Y. F., Field, A. S., & Stein, B. E. (2002). Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci, 14(3), 420-429. doi:10.1162/089892902317361930
Lee, C. Y., Hsu, C. H., Chang, Y. N., Chen, W. F., & Chao, P. C. (2015). The Feedback Consistency Effect in Chinese Character Recognition: Evidence from a Psycholinguistic Norm. Language and Linguistics, 16(4), 535-554. doi:10.1177/1606822x15583238
Lee, C. Y., Huang, H. W., Kuo, W. J., Tsai, J. L., & Tzeng, J. L. O. (2010). Cognitive and neural basis of the consistency and lexicality effects in reading Chinese. Journal of Neurolinguistics, 23(1), 10-27. doi:10.1016/j.jneuroling.2009.07.003
Lee, C. Y., Tsai, J. L., Chan, W. H., Hsu, C. H., Hung, D. L., & Tzeng, O. J. (2007). Temporal dynamics of the consistency effect in reading Chinese: an event-related potentials study. Neuroreport, 18(2), 147-151. doi:10.1097/WNR.0b013e328010d4e4
Lee, C. Y., Tsai, J. L., Huang, H. W., Hung, D. L., & Tzeng, O. J. (2006). The temporal signatures of semantic and phonological activations for Chinese sublexical processing: an event-related potential study. Brain Res, 1121(1), 150-159. doi:10.1016/j.brainres.2006.08.117
Lee, C. Y., Tsai, J. L., Kuo, W. J., Yeh, T. C., Wu, Y. T., Ho, L. T., . . . Hsieh, J. C. (2004). Neuronal correlates of consistency and frequency effects on Chinese character naming: an event-related fMRI study. Neuroimage, 23(4), 1235-1245. doi:10.1016/j.neuroimage.2004.07.064
Lee, C. Y., Tsai, J. L., Su, C. I., Tzeng, J. L., & Hung, L. (2005). Consistency, regularity, and frequency effects in naming Chinese characters.
Lee, H. S., Fujii, T., Okuda, J., Tsukiura, T., Umetsu, A., Suzuki, M., . . . Yamadori, A. (2003). Changes in brain activation patterns associated with learning of Korean words by Japanese: an fMRI study. Neuroimage, 20(1), 1-11.
Lee, P. L., Chang, H. C., Hsieh, T. Y., Deng, H. T., & Sun, C. W. (2012). A Brain-Wave-Actuated Small Robot Car Using Ensemble Empirical Mode Decomposition-Based Approach. Ieee Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 42(5), 1053-1064. doi:10.1109/Tsmca.2012.2187184
Lete, B., Peereman, R., & Fayol, M. (2008). Consistency and word-frequency effects on spelling among first- to fifth-grade French children: A regression-based study. Journal of Memory and Language, 58(4), 952-977. doi:10.1016/j.jml.2008.01.001
Leung, M.-T., Lui, H.-M., Law, S.-P., Fung, R. S.-Y., & Lau, K.-Y. (2013). Feedback Consistency Effect on Writing-to-Dictation Task in Chinese. Asia Pacific Journal of Speech, Language and Hearing, 14(1), 61-71. doi:10.1179/136132811805334894
Liu, Y., Dunlap, S., Fiez, J., & Perfetti, C. (2007). Evidence for neural accommodation to a writing system following learning. Hum Brain Mapp, 28(11), 1223-1234. doi:10.1002/hbm.20356
Ludersdorfer, P., Kronbichler, M., & Wimmer, H. (2015). Accessing orthographic representations from speech: the role of left ventral occipitotemporal cortex in spelling. Hum Brain Mapp, 36(4), 1393-1406. doi:10.1002/hbm.22709
Ludersdorfer, P., Wimmer, H., Richlan, F., Schurz, M., Hutzler, F., & Kronbichler, M. (2016). Left ventral occipitotemporal activation during orthographic and semantic processing of auditory words. Neuroimage, 124(Pt A), 834-842. doi:10.1016/j.neuroimage.2015.09.039
Müller, O., Duñabeitia, J. A., & Carreiras, M. (2010). Orthographic and associative neighborhood density effects: What is shared, what is different? Psychophysiology, 47(3), 455-466.
Macaluso, E., George, N., Dolan, R., Spence, C., & Driver, J. (2004). Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage, 21(2), 725-732. doi:10.1016/j.neuroimage.2003.09.049
Marco-Pallares, J., Grau, C., & Ruffini, G. (2005). Combined ICA-LORETA analysis of mismatch negativity. Neuroimage, 25(2), 471-477. doi:10.1016/j.neuroimage.2004.11.028
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of neuroscience methods, 164(1), 177-190. doi:10.1016/j.jneumeth.2007.03.024
Martin, C. D., Dering, B., Thomas, E. M., & Thierry, G. (2009). Brain potentials reveal semantic priming in both the 'active' and the 'non-attended' language of early bilinguals. Neuroimage, 47(1), 326-333. doi:10.1016/j.neuroimage.2009.04.025
Massaro, D. W., & Jesse, A. (2005). The magic of reading: Too many influences for quick and easy explanations. From orthography to pedagogy: Essays in honor of Richard L. Venezky, 37-61.
McGettigan, C., Warren, J. E., Eisner, F., Marshall, C. R., Shanmugalingam, P., & Scott, S. K. (2011). Neural correlates of sublexical processing in phonological working memory. J Cogn Neurosci, 23(4), 961-977. doi:10.1162/jocn.2010.21491
McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage, 61(4), 1277-1286. doi:10.1016/j.neuroimage.2012.03.068
Midgley, K. J., Holcomb, P. J., & Grainger, J. (2009). Language effects in second language learners and proficient bilinguals investigated with event-related potentials. J Neurolinguistics, 22(3), 281-300. doi:10.1016/j.jneuroling.2008.08.001
Miller, K. M., & Swick, D. (2003). Orthography influences the perception of speech in alexic patients. J Cogn Neurosci, 15(7), 981-990. doi:10.1162/089892903770007371
Montant, M., Schon, D., Anton, J. L., & Ziegler, J. C. (2011). Orthographic Contamination of Broca's Area. Front Psychol, 2, 378. doi:10.3389/fpsyg.2011.00378
Morais, J., Cary, L., Alegria, J., & Bertelson, P. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7(4), 323-331.
Muneaux, M., & Ziegler, J. C. (2004). Locus of orthographic effects in spoken word recognition: Novel insights from the neighbour generation task. Language and Cognitive Processes, 19(5), 641-660. doi:10.1080/016909604444000052
Murray, J. G., Howie, C. A., & Donaldson, D. I. (2015). The neural mechanism underlying recollection is sensitive to the quality of episodic memory: Event related potentials reveal a some-or-none threshold. Neuroimage, 120, 298-308. doi:10.1016/j.neuroimage.2015.06.069
Newman, S. D. (2012). The homophone effect during visual word recognition in children: an fMRI study. Psychol Res, 76(3), 280-291. doi:10.1007/s00426-011-0347-2
Novick, J. M., Trueswell, J. C., & Thompson‐Schill, S. L. (2010). Broca’s area and language processing: Evidence for the cognitive control connection. Language and Linguistics Compass, 4(10), 906-924.
O'Rourke, T. B., & Holcomb, P. J. (2002). Electrophysiological evidence for the efficiency of spoken word processing. Biol Psychol, 60(2-3), 121-150. doi:10.1016/s0301-0511(02)00045-5
Okada, K., & Hickok, G. (2006). Identification of lexical–phonological networks in the superior temporal sulcus using functional magnetic resonance imaging. Neuroreport, 17(12), 1293-1296.
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci, 2011, 156869. doi:10.1155/2011/156869
Paller, K. A., Kutas, M., & McIsaac, H. K. J. P. S. (1995). Monitoring conscious recollection via the electrical activity of the brain. 6(2), 107-111.
Pattamadilok, C., Knierim, I. N., Kawabata Duncan, K. J., & Devlin, J. T. (2010). How does learning to read affect speech perception? J Neurosci, 30(25), 8435-8444. doi:10.1523/JNEUROSCI.5791-09.2010
Pattamadilok, C., Kolinsky, R., Luksaneeyanawin, S., & Morais, J. (2008). Orthographic congruency effects in the suprasegmental domain: evidence from Thai. Q J Exp Psychol (Hove), 61(10), 1515-1537. doi:10.1080/17470210701587305
Pattamadilok, C., Kolinsky, R., Ventura, P., Radeau, M., & Morais, J. (2007). Orthographic representations in spoken word priming: no early automatic activation. Lang Speech, 50(Pt 4), 505-531. doi:10.1177/00238309070500040201
Pattamadilok, C., Morais, J., De Vylder, O., Ventura, P., & Kolinsky, R. (2009). The orthographic consistency effect in the recognition of French spoken words: An early developmental shift from sublexical to lexical orthographic activation. Applied Psycholinguistics, 30(3), 441-462. doi:10.1017/S0142716409090225
Pattamadilok, C., Morais, J., Ventura, P., & Kolinsky, R. (2007). The locus of the orthographic consistency effect in auditory word recognition: Further evidence from French. Language and Cognitive Processes, 22(5), 700-726. doi:10.1080/01690960601049628
Pattamadilok, C., Perre, L., Dufau, S., & Ziegler, J. C. (2009). On-line orthographic influences on spoken language in a semantic task. J Cogn Neurosci, 21(1), 169-179. doi:10.1162/jocn.2009.21014
Pattamadilok, C., Perre, L., & Ziegler, J. C. (2011). Beyond rhyme or reason: ERPs reveal task-specific activation of orthography on spoken language. Brain Lang, 116(3), 116-124. doi:10.1016/j.bandl.2010.12.002
Pattamadilok, C., Planton, S., & Bonnard, M. (2019). Spoken language coding neurons in the Visual Word Form Area: Evidence from a TMS adaptation paradigm. Neuroimage, 186, 278-285. doi:10.1016/j.neuroimage.2018.11.014
Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342-345. doi:10.1038/362342a0
Peereman, R., Content, A., & Bonin, P. (1998). Is perception a two-way street? The case of feedback consistency in visual word recognition. Journal of Memory and Language, 39(2), 151-174.
Peereman, R., Dufour, S., & Burt, J. S. (2009). Orthographic influences in spoken word recognition: the consistency effect in semantic and gender categorization tasks. Psychon Bull Rev, 16(2), 363-368. doi:10.3758/PBR.16.2.363
Perre, L., Bertrand, D., & Ziegler, J. C. (2011). Literacy Affects Spoken Language in a Non-Linguistic Task: An ERP Study. Front Psychol, 2, 274. doi:10.3389/fpsyg.2011.00274
Perre, L., Midgley, K., & Ziegler, J. C. (2009). When beef primes reef more than leaf: orthographic information affects phonological priming in spoken word recognition. Psychophysiology, 46(4), 739-746. doi:10.1111/j.1469-8986.2009.00813.x
Perre, L., Pattamadilok, C., Montant, M., & Ziegler, J. C. (2009). Orthographic effects in spoken language: on-line activation or phonological restructuring? Brain Res, 1275, 73-80. doi:10.1016/j.brainres.2009.04.018
Perre, L., & Ziegler, J. C. (2008). On-line activation of orthography in spoken word recognition. Brain Res, 1188, 132-138. doi:10.1016/j.brainres.2007.10.084
Perry, C. (2003). A phoneme-grapheme feedback consistency effect. Psychon Bull Rev, 10(2), 392-397.
Petersson, K. M., Reis, A., Askelof, S., Castro-Caldas, A., & Ingvar, M. (2000). Language processing modulated by literacy: a network analysis of verbal repetition in literate and illiterate subjects. J Cogn Neurosci, 12(3), 364-382.
Petrova, A., Gaskell, M. G., & Ferrand, L. (2011). Orthographic consistency and word-frequency effects in auditory word recognition: new evidence from lexical decision and rime detection. Front Psychol, 2(263), 263. doi:10.3389/fpsyg.2011.00263
Piai, V., Roelofs, A., Acheson, D. J., & Takashima, A. (2013). Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production. Front Hum Neurosci, 7, 832. doi:10.3389/fnhum.2013.00832
Planton, S., Chanoine, V., Sein, J., Anton, J. L., Nazarian, B., Pallier, C., & Pattamadilok, C. (2019). Top-down activation of the visuo-orthographic system during spoken sentence processing. Neuroimage, 202, 116135. doi:10.1016/j.neuroimage.2019.116135
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10(1), 15-35. doi:10.1006/nimg.1999.0441
Pollatsek, A., Perea, M., & Binder, K. S. (1999). The effects of "neighborhood size" in reading and lexical decision. Journal of Experimental Psychology-Human Perception and Performance, 25(4), 1142-1158. doi:Doi 10.1037/0096-1523.25.4.1142
Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci, 1191(1), 62-88. doi:10.1111/j.1749-6632.2010.05444.x
Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816-847.
Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends Cogn Sci, 15(6), 246-253. doi:10.1016/j.tics.2011.04.001
Raizada, R. D., & Poldrack, R. A. (2007). Selective amplification of stimulus differences during categorical processing of speech. Neuron, 56(4), 726-740. doi:10.1016/j.neuron.2007.11.001
Ravizza, S. M., Hazeltine, E., Ruiz, S., & Zhu, D. C. (2011). Left TPJ activity in verbal working memory: Implications for storage- and sensory-specific models of short term memory. Neuroimage, 55(4), 1836-1846. doi:10.1016/j.neuroimage.2010.12.021
Rodd, J. M., Vitello, S., Woollams, A. M., & Adank, P. (2015). Localising semantic and syntactic processing in spoken and written language comprehension: an Activation Likelihood Estimation meta-analysis. Brain Lang, 141, 89-102. doi:10.1016/j.bandl.2014.11.012
Rohaut, B., Faugeras, F., Chausson, N., King, J. R., Karoui, I. E., Cohen, L., & Naccache, L. (2015). Probing ERP correlates of verbal semantic processing in patients with impaired consciousness. Neuropsychologia, 66, 279-292. doi:10.1016/j.neuropsychologia.2014.10.014
Rugg, M. D. (1987). Dissociation of Semantic Priming, Word and Non-Word Repetition Effects by Event-Related Potentials. Quarterly Journal of Experimental Psychology Section a-Human Experimental Psychology, 39(1), 123-148. doi:Doi 10.1080/02724988743000060
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends Cogn Sci, 11(6), 251-257. doi:10.1016/j.tics.2007.04.004
Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392(6676), 595-598. doi:10.1038/33396
Sanquist, T. F., Rohrbaugh, J. W., Syndulko, K., & Lindsley, D. B. (1980). Electrocortical signs of levels of processing: perceptual analysis and recognition memory. Psychophysiology, 17(6), 568-576. doi:10.1111/j.1469-8986.1980.tb02299.x
Scott, S. K., & Wise, R. J. (2004). The functional neuroanatomy of prelexical processing in speech perception. Cognition, 92(1-2), 13-45. doi:10.1016/j.cognition.2002.12.002
Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychol Rev, 96(4), 523-568.
Seidenberg, M. S., & Tanenhaus, M. K. (1979). Orthographic Effects on Rhyme Monitoring. Journal of Experimental Psychology-Human Learning and Memory, 5(6), 546-554. doi:Doi 10.1037//0278-7393.5.6.546
Siok, W. T., Jin, Z., Fletcher, P., & Tan, L. H. (2003). Distinct brain regions associated with syllable and phoneme. Hum Brain Mapp, 18(3), 201-207. doi:10.1002/hbm.10094
Soares, I., Collet, L., & Duclaux, R. (1991). Electrical and Magnetic Neural Activity Electrophysiological Correlates of Auditory Lexical Decision: An Attempt To Test The “Cohort Model”. International journal of neuroscience, 57(1-2), 111-122.
Spencer, K. (2007). Predicting children's word-spelling difficulty for common English words from measures of orthographic transparency, phonemic and graphemic length and word frequency. Br J Psychol, 98(Pt 2), 305-338. doi:10.1348/000712606X123002
Stone, G. O., & Van Orden, G. C. (1994a). Building a resonance framework for word recognition using design and system principles. J Exp Psychol Hum Percept Perform, 20(6), 1248-1268.
Stone, G. O., & Van Orden, G. C. (1994b). Building a Resonance Framework for Word Recognition Using Design and System Principles. Journal of Experimental Psychology-Human Perception and Performance, 20(6), 1248-1268. doi:Doi 10.1037/0096-1523.20.6.1248
Stone, G. O., Vanhoy, M., & Van Orden, G. C. (1997). Perception is a two-way street: Feedforward and feedback phonology in visual word recognition. Journal of Memory and Language, 36(3), 337-359. doi:DOI 10.1006/jmla.1996.2487
Taft, M. (2006). Orthographically influenced abstract phonological representation: evidence from non-rhotic speakers. J Psycholinguist Res, 35(1), 67-78. doi:10.1007/s10936-005-9004-5
Taft, M. (2011). Orthographic influences when processing spoken pseudowords: theoretical implications. Front Psychol, 2. doi:ARTN 140
10.3389/fpsyg.2011.00140
Taft, M., Castles, A., Davis, C., Lazendic, G., & Nguyen-Hoan, M. (2008). Automatic activation of orthography in spoken word recognition: Pseudohomograph priming. Journal of Memory and Language, 58(2), 366-379. doi:10.1016/j.jml.2007.11.002
Taft, M., & Hambly, G. (1985). The Influence of Orthography on Phonological Representations in the Lexicon. Journal of Memory and Language, 24(3), 320-335. doi:Doi 10.1016/0749-596x(85)90031-2
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum Brain Mapp, 25(1), 83-91. doi:10.1002/hbm.20134
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. H. (2001). The neural system underlying Chinese logograph reading. Neuroimage, 13(5), 836-846. doi:10.1006/nimg.2001.0749
Tan, L. H., Spinks, J. A., Gao, J. H., Liu, H. L., Perfetti, C. A., Xiong, J., . . . Fox, P. T. (2000). Brain activation in the processing of Chinese characters and words: a functional MRI study. Hum Brain Mapp, 10(1), 16-27.
Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A, 94(26), 14792-14797.
Thompson-Schill, S. L., D'Esposito, M., & Kan, I. P. (1999). Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron, 23(3), 513-522.
Tsai, J. L., Lee, C. Y., Tzeng, O. J. L., Hung, D. L., & Yen, N. S. (2004). Use of phonological codes for Chinese characters: Evidence from processing of parafoveal preview when reading sentences. Brain Lang, 91(2), 235-244. doi:10.1016/j.bandl.2004.02.005
van Atteveldt, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron, 43(2), 271-282. doi:10.1016/j.neuron.2004.06.025
van Gaal, S., Naccache, L., Meuwese, J. D., van Loon, A. M., Leighton, A. H., Cohen, L., & Dehaene, S. (2014). Can the meaning of multiple words be integrated unconsciously? Phil. Trans. R. Soc. B, 369(1641), 20130212.
Ventura, P., Kolinsky, R., Pattamadilok, C., & Morais, J. (2008). The developmental turnpoint of orthographic consistency effects in speech recognition. J Exp Child Psychol, 100(2), 135-145. doi:10.1016/j.jecp.2008.01.003
Ventura, P., Morais, J., & Kolinsky, R. (2007). The development of the orthographic consistency effect in speech recognition: from sublexical to lexical involvement. Cognition, 105(3), 547-576. doi:10.1016/j.cognition.2006.12.005
Ventura, P., Morais, J., Pattamadilok, C., & Kolinsky, R. (2004). The locus of the orthographic consistency effect in auditory word recognition. Language and Cognitive Processes, 19(1), 57-95. doi:10.1080/01690960344000134
Vergara‐Martínez, M., & Swaab, T. Y. (2012). Orthographic neighborhood effects as a function of word frequency: An event‐related potential study. Psychophysiology, 49(9), 1277-1289.
Vilberg, K. L., Moosavi, R. F., & Rugg, M. D. (2006). The relationship between electrophysiological correlates of recollection and amount of information retrieved. Brain Res, 1122(1), 161-170. doi:10.1016/j.brainres.2006.09.023
Vilberg, K. L., & Rugg, M. D. (2009). Functional significance of retrieval-related activity in lateral parietal cortex: Evidence from fMRI and ERPs. Hum Brain Mapp, 30(5), 1490-1501. doi:10.1002/hbm.20618
Wagner, A. D., Koutstaal, W., Maril, A., Schacter, D. L., & Buckner, R. L. (2000). Task-specific repetition priming in left inferior prefrontal cortex. Cereb Cortex, 10(12), 1176-1184. doi:10.1093/cercor/10.12.1176
Wagner, A. D., Pare-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron, 31(2), 329-338.
Wang, W., Li, X., Ning, N., & Zhang, J. X. (2012). The nature of the homophone density effect: an ERP study with Chinese spoken monosyllable homophones. Neurosci Lett, 516(1), 67-71. doi:10.1016/j.neulet.2012.03.059
Warren, L. R. (1980). Evoked potential correlates of recognition memory. Biol Psychol, 11(1), 21-35. doi:10.1016/0301-0511(80)90023-x
Weekes, B. S., Castles, A. E., & Davies, R. A. (2006). Effects of consistency and age of acquisition on reading and spelling among developing readers. Reading and Writing, 19(2), 133-169. doi:10.1007/s11145-005-2032-6
Williams, N., Nasuto, S. J., & Saddy, J. D. (2011). Evaluation of Empirical Mode Decomposition for Event-Related Potential Analysis. EURASIP Journal on Advances in Signal Processing, 2011(1), 965237. doi:Artn 965237
10.1155/2011/965237
Woodward, S. H., Owens, J., & Thompson, L. W. (1990). Word-to-word variation in ERP component latencies: spoken words. Brain Lang, 38(4), 488-503. doi:10.1016/0093-934x(90)90133-2
Wright, T. M., Pelphrey, K. A., Allison, T., McKeown, M. J., & McCarthy, G. (2003). Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cereb Cortex, 13(10), 1034-1043. doi:10.1093/cercor/13.10.1034
Wu, C. H., Lee, P. L., Shu, C. H., Yang, C. Y., Lo, M. T., Chang, C. Y., & Hsieh, J. C. (2012). Empirical Mode Decomposition-Based Approach for Intertrial Analysis of Olfactory Event-Related Potential Features. Chemosensory Perception, 5(3-4), 280-291. doi:10.1007/s12078-012-9134-8
Wu, Z., & Huang, N. E. (2009). Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, 01(01), 1-41. doi:doi:10.1142/S1793536909000047
Xiang, H. D., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical functional connectivity pattern in the perisylvian language networks. Cereb Cortex, 20(3), 549-560. doi:10.1093/cercor/bhp119
Xiao, Z., Zhang, J. X., Wang, X., Wu, R., Hu, X., Weng, X., & Tan, L. H. (2005). Differential activity in left inferior frontal gyrus for pseudowords and real words: an event-related fMRI study on auditory lexical decision. Hum Brain Mapp, 25(2), 212-221. doi:10.1002/hbm.20105
Yoncheva, Y. N., Zevin, J. D., Maurer, U., & McCandliss, B. D. (2010). Auditory selective attention to speech modulates activity in the visual word form area. Cereb Cortex, 20(3), 622-632. doi:10.1093/cercor/bhp129
Zevin, J. D., Yang, J., Skipper, J. I., & McCandliss, B. D. (2010). Domain general change detection accounts for “dishabituation” effects in temporal–parietal regions in functional magnetic resonance imaging studies of speech perception. Journal of Neuroscience, 30(3), 1110-1117.
Zhao, L., Chen, C., Shao, L., Wang, Y., Xiao, X., Chen, C., . . . Xue, G. (2016). Orthographic and phonological representations in the fusiform cortex. Cereb Cortex, 27(11), 5197-5210.
Zhao, R., Fan, R., Liu, M. X., Wang, X. J., & Yang, J. F. (2017). Rethinking the function of brain regions for reading Chinese characters in a meta-analysis of fMRI studies. Journal of Neurolinguistics, 44, 120-133. doi:10.1016/j.jneuroling.2017.04.001
Zhuang, J., Randall, B., Stamatakis, E. A., Marslen-Wilson, W. D., & Tyler, L. K. (2011). The interaction of lexical semantics and cohort competition in spoken word recognition: an fMRI study. J Cogn Neurosci, 23(12), 3778-3790. doi:10.1162/jocn_a_00046
Ziegler, J. C., & Ferrand, L. (1998). Orthography shapes the perception of speech: The consistency effect in auditory word recognition. Psychonomic Bulletin & Review, 5(4), 683-689. doi:Doi 10.3758/Bf03208845
Ziegler, J. C., Ferrand, L., Jacobs, A. M., Rey, A., & Grainger, J. (2000). Visual and phonological codes in letter and word recognition: evidence from incremental priming. Q J Exp Psychol A, 53(3), 671-692. doi:10.1080/713755906
Ziegler, J. C., Ferrand, L., & Montant, M. (2004). Visual phonology: the effects of orthographic consistency on different auditory word recognition tasks. Mem Cognit, 32(5), 732-741.
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychol Bull, 131(1), 3-29. doi:10.1037/0033-2909.131.1.3
Ziegler, J. C., Montant, M., & Jacobs, A. M. (1997). The feedback consistency effect in lexical decision and naming. Journal of Memory and Language, 37(4), 533-554. doi:DOI 10.1006/jmla.1997.2525
Ziegler, J. C., Muneaux, M., & Grainger, J. (2003). Neighborhood effects in auditory word recognition: Phonological competition and orthographic facilitation. Journal of Memory and Language, 48(4), 779-793. doi:10.1016/S0749-596x(03)00006-8
Ziegler, J. C., Petrova, A., & Ferrand, L. (2008). Feedback consistency effects in visual and auditory word recognition: where do we stand after more than a decade? J Exp Psychol Learn Mem Cogn, 34(3), 643-661. doi:10.1037/0278-7393.34.3.643
Zou, L., Packard, J. L., Xia, Z., Liu, Y., & Shu, H. (2015). Neural Correlates of Morphological Processing: Evidence from Chinese. Front Hum Neurosci, 9, 714. doi:10.3389/fnhum.2015.00714
電子全文 電子全文(網際網路公開日期:20250115)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊