跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉宜儒
研究生(外文):Yi-Ju Liu
論文名稱:隨著時間收集訊息的歷程:訊息的流逝與更新率在決策中所扮演的角色
論文名稱(外文):Collecting information through time: The role of information lifespan and rate of information flow on decision making
指導教授:吳仕煒
指導教授(外文):Shih-Wei Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:42
中文關鍵詞:決策機會成本反應時間證據積累成本-效益權衡遺漏之訊息整合
外文關鍵詞:decision makingopportunity costreaction timeevidence accumulationcost-benefit tradeoffleaky integration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
當我們在做決策時,通常需要收集資訊來作為判斷的依據,而收集愈多的資訊對於作出正確的判斷會愈有利,但同時也會花費較多的時間與心力,使整體效益降低。因此,「如何適當地平衡收集資訊所造成的成本與效益」是一個重要的研究議題。我們認為一個理想的決策者應該能夠考量其本身隨著時間消耗而收集愈多的資訊量所提升的正確率,以及其當下面臨整體效益降低的成本,進而找到一個擁有最高期望值的最佳決策時間。過去的研究發現,人們在做關於這種成本與效益權衡的決策時,會傾向過度看重收集資訊所帶來的成本,而花費相較於最佳作答時間還要少的時間、收集較少的資訊。在我們的研究中,將探討兩個已知的重要變項對於人們行為表現的影響,即資訊的流逝率與資訊的更新率對收集資訊的成本與效益權衡決策的影響。我們發現:資訊的流逝率在不影響正確率表現的情況下會影響成本與效益權衡的決策;而資訊的更新率會影響正確率表現,但不影響成本與效益權衡的決策。這些研究結果指出:人們對於收集資訊所造成的成本與效益權衡決策的質量取決於資訊的流逝率所導致工作記憶的限制,而不是資訊的更新率所導致訊息處理歷程的負荷。
In many decisions we face, collecting more information is beneficial to making better choices but comes at a cost of time and energy that can otherwise be spent on alternative activities. An important question therefore is how to appropriately balance the cost and benefit associated with information collection. Previous research showed that – in decisions about such cost-benefit tradeoff – people tend to overweight the cost and as a result collect less information than they should. Here we investigated the impact of two important variables known to impact human performance – information lifespan and rate of information flow – on cost-benefit tradeoff decisions regarding information collection. We found that information lifespan affects cost-benefit tradeoff decisions without changing performance accuracy. By contrast, rate of information flow affects performance accuracy but not cost-benefit tradeoff decisions. These findings suggest that quality of cost-benefit tradeoff decision regarding information collection depends on working memory constraints imposed by information lifespan but not processing load imposed by rate of information flow.
Contents

中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES iv
LIST OF TABLES v
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: MATERIALS AND METHODS 4
Experiment design 4
Procedure 7
Session 1: fixed-reward task 7
Session 2: decreasing-reward task 8
Additional trials 9
Data analysis 9
Estimating the speed-accuracy tradeoff function 9
Nested hypothesis test 10
Optimal model for response time 11
Sample history analysis 12
CHAPTER 3: RESULTS 13
Robust speed-accuracy tradeoff in performance 13
Information lifespan did not alter SAT 14
Rate of information flow 15
Interim summary 18
Overall improvement on performance in Session 2 19
Suboptimal cost-benefit tradeoff regarding information collection 20
Sample history analysis 25
CHAPTER 4: DISCUSSION 28
Impact of information lifespan and rate of information flow 28
Optimal versus suboptimal decision time 31
Model comparisons for SAT functional forms 33
Implications to real-life decision making 34
Limitations 35
REFERENCE 36
APPENDICES 38


List of Figures

Figure 1. Schematic of experiment paradigms 5
Figure 2. Speed-accuracy tradeoff of all 6 experiments 13
Figure 3. Estimated speed-accuracy tradeoff (data from Session 1) 15
Figure 4. Speed-accuracy tradeoff of all 6 experiments in Session 2 17
Figure 5. Estimated speed-accuracy tradeoff (data from Session 2) 18
Figure 6. Comparison of SAT performance between sessions 19
Figure 7. An optimal model of RT that comparison between the optimal and actual RT in Session 2 20
Figure 8. Comparison between actual RT and optimal RT of all 6 experiments 21
Figure 9. Comparison between the actual RT and the optimal RT 22
Figure 10. Comparison between actual RT and optimal RT 23
Figure 11. Subjects’ performance in the space of sample size 24
Figure 12. Comparison between the actual RT and the optimal RT which combined the data from Session 1 and 2 to compute the optimal time 25
Figure 13. The estimated weights of past samples on choice are plotted over time 25
Figure 14. The estimated weights of sample on choice are plotted over time before subjects make a decision from Session 2 27
Figure A1. Comparison between functional form 1 and form 2 38
Figure A2. Comparison of single curve and independent curve for information lifespan 39
Figure A3. Comparison of single curve and independent curve for sampling rate 40
Figure A4. Comparison of single curve and independent curve for sample size 41
Figure A5. Comparison of SAT performance between sessions (SAT fitted with functional form 2) 42


List of Tables

Table 1. Experimental design. 6
Table 2. Six different time windows for each sampling rate (10, 20, 30Hz) 8
Table A1. Number of subjects who used the functional form 1 or form 2 to estimate SAT performance better than the other for each experiment 38
Reference

Austin, E. J. (2005). Emotional intelligence and emotional information processing. Personality and individual differences, 39(2), 403-414.

Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in cognitive sciences, 4(11), 417-423.

Bogacz, R., Hu, P. T., Holmes, P. J., & Cohen, J. D. (2010). Do humans produce the speed–accuracy trade-off that maximizes reward rate? The Quarterly Journal of Experimental Psychology, 63(5), 863-891.

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745-4765.

Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013). Rats and humans can optimally accumulate evidence for decision-making. Science, 340(6128), 95-98.

Courtney, S. M. (2004). Attention and cognitive control as emergent properties of information representation in working memory. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 501-516. doi:10.3758/cabn.4.4.501

de Lange, F. P., Jensen, O., & Dehaene, S. (2010). Accumulation of Evidence during Sequential Decision Making: The Importance of Top–Down Factors. The Journal of Neuroscience, 30(2), 731-738. doi:10.1523/jneurosci.4080-09.2010

Drugowitsch, J., DeAngelis, G. C., Angelaki, D. E., & Pouget, A. (2015). Tuning the speed-accuracy trade-off to maximize reward rate in multisensory decision-making. Elife, 4, e06678.

Farashahi, S., Ting, C.-C., Kao, C.-H., Wu, S.-W., & Soltani, A. (2018). Dynamic combination of sensory and reward information under time pressure. PLOS Computational Biology, 14(3), e1006070. doi:10.1371/journal.pcbi.1006070

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual review of psychology, 67, 641-666.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual review of neuroscience, 30.

Heitz, R. P. (2014). The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Frontiers in neuroscience, 8, 150.

Hoel, P. G., Port, S. C., & Stone, C. J. (1971). Introduction to Statistical Theory: Houghton-Mifflin.

Lemerise, E. A., & Arsenio, W. F. (2000). An integrated model of emotion processes and cognition in social information processing. Child development, 71(1), 107-118.

Moore, D. L., Hausknecht, D., & Thamodaran, K. (1986). Time compression, response opportunity, and persuasion. Journal of Consumer Research, 13(1), 85-99.

Newsome, W., & Pare, E. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). The Journal of Neuroscience, 8(6), 2201-2211. doi:10.1523/jneurosci.08-06-02201.1988

Pollack, I., & Johnson, L. (1963). Continuing memory span for digits. Perceptual and Motor Skills, 17(3), 731-734.

Pollack, I., Johnson, L. B., & Knaff, P. R. (1959). Running memory span. Journal of Experimental Psychology, 57(3), 137.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural computation, 20(4), 873-922.

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological review, 111(2), 333.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in cognitive sciences, 20(4), 260-281.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475-9489.

Samad, M., Chung, A. J., & Shams, L. (2015). Perception of body ownership is driven by Bayesian sensory inference. PloS one, 10(2), e0117178.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of neurophysiology, 86(4), 1916-1936.

Shuell, T. J. (1986). Cognitive Conceptions of Learning. Review of Educational Research, 56(4), 411-436. doi:10.3102/00346543056004411

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological review, 108(3), 550.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top