|
1.Jemal, A. et al. Cancer statistics, 2009. CA Cancer J Clin 59, 225-249, doi:10.3322/caac.20006 (2009). 2.Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359, 1116-1127, doi:10.1056/NEJMoa0802656 (2008). 3.Ferris, R. L. et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med 375, 1856-1867, doi:10.1056/NEJMoa1602252 (2016). 4.Lu, Y. F., Goldstein, D. B., Angrist, M. & Cavalleri, G. Personalized medicine and human genetic diversity. Cold Spring Harb Perspect Med 4, a008581, doi:10.1101/cshperspect.a008581 (2014). 5.Collins, F. S. & Varmus, H. A new initiative on precision medicine. N Engl J Med 372, 793-795, doi:10.1056/NEJMp1500523 (2015). 6.Specenier, P. & Vermorken, J. B. Cetuximab: its unique place in head and neck cancer treatment. Biologics 7, 77-90, doi:10.2147/BTT.S43628 (2013). 7.Zimmermann, M., Zouhair, A., Azria, D. & Ozsahin, M. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol 1, 11, doi:10.1186/1748-717X-1-11 (2006). 8.Machiels, J. P. et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised phase 3 trial. Lancet Oncol 16, 583-594, doi:10.1016/S1470-2045(15)70124-5 (2015). 9.Ferlito, A., Shaha, A. R., Silver, C. E., Rinaldo, A. & Mondin, V. Incidence and sites of distant metastases from head and neck cancer. ORL J Otorhinolaryngol Relat Spec 63, 202-207, doi:10.1159/000055740 (2001). 10.Garavello, W., Ciardo, A., Spreafico, R. & Gaini, R. M. Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 132, 762-766, doi:10.1001/archotol.132.7.762 (2006). 11.Li, A. C. et al. Distant metastasis risk and patterns of nasopharyngeal carcinoma in the era of IMRT: long-term results and benefits of chemotherapy. Oncotarget 6, 24511-24521, doi:10.18632/oncotarget.4312 (2015). 12.Kokemueller, H., Eckardt, A., Brachvogel, P. & Hausamen, J. E. Adenoid cystic carcinoma of the head and neck--a 20 years experience. Int J Ora Maxillofac Surg 33, 25-31, doi:10.1054/ijom.2003.0448 (2004). 13.Bobbio, A. et al. Lung metastasis resection of adenoid cystic carcinoma of salivary glands. Eur J Cardiothorac Surg 33, 790-793, doi:10.1016/j.ejcts.2007.12.057 (2008). 14.Chen, F. et al. Pulmonary resection for metastatic head and neck cancer. World J Surg 32, 1657-1662, doi:10.1007/s00268-008-9631-8 (2008). 15.Winter, H. et al. Does surgical resection of pulmonary metastases of head and neck cancer improve survival? Ann Surg Oncol 15, 2915-2926, doi:10.1245/s10434-008-0001-4 (2008). 16.Shiono, S. et al. Pulmonary metastasectomy for pulmonary metastases of head and neck squamous cell carcinomas. Ann Thorac Surg 88, 856-860, doi:10.1016/j.athoracsur.2009.04.040 (2009). 17.Liu, D. et al. Pulmonary metastasectomy for head and neck cancers. Ann Surg Oncol 6, 572-578 (1999). 18.NCCN Clinical Practice Guideline in Head and Neck Cancers (Version I. 2018). 19.Florescu, C. & Thariat, J. Local ablative treatments of oligometastases from head and neck carcinomas. Crit Rev Oncol Hematol 91, 47-63, doi:10.1016/j.critrevonc.2014.01.004 (2014). 20.Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin 67, 7-30, doi:10.3322/caac.21387 (2017). 21.Chen, C. J., You, S. L., Lin, L. H., Hsu, W. L. & Yang, Y. W. Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol 32 Suppl, S66-81, doi:10.1093/jjco/hye138 (2002). 22.Bernier, J. et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 350, 1945-1952, doi:10.1056/NEJMoa032641 (2004). 23.Cooper, J. S. et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 350, 1937-1944, doi:10.1056/NEJMoa032646 (2004). 24.Chen, W. C. et al. Identification of High-Risk Subgroups of Patients With Oral Cavity Cancer in Need of Postoperative Adjuvant Radiotherapy or Chemo-Radiotherapy. Medicine 95, e3770, doi:10.1097/MD.0000000000003770 (2016). 25.Lu, H. J. et al. Modified weekly cisplatin-based chemotherapy is acceptable in postoperative concurrent chemoradiotherapy for locally advanced head and neck cancer. Biomed Res Int 2015, 307576, doi:10.1155/2015/307576 (2015). 26.Tahara, M. et al. Phase II trial of combination treatment with paclitaxel, carboplatin and cetuximab (PCE) as first-line treatment in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (CSPOR-HN02). Ann Oncol 29, 1004-1009, doi:10.1093/annonc/mdy040 (2018). 27.Burtness, B. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394, 1915-1928, doi:10.1016/S0140-6736(19)32591-7 (2019). 28.Gillison, M. L. et al. CheckMate 141: 1-Year Update and Subgroup Analysis of Nivolumab as First-Line Therapy in Patients with Recurrent/Metastatic Head and Neck Cancer. Oncologist 23, 1079-1082, doi:10.1634/theoncologist.2017-0674 (2018). 29.Torti, D. & Trusolino, L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 3, 623-636, doi:10.1002/emmm.201100176 (2011). 30.Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355, 2408-2417, doi:10.1056/NEJMoa062867 (2006). 31.Kaelin, W. G., Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5, 689-698, doi:10.1038/nrc1691 (2005). 32.McLornan, D. P., List, A. & Mufti, G. J. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med 371, 1725-1735, doi:10.1056/NEJMra1407390 (2014). 33.Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366, 1382-1392, doi:10.1056/NEJMoa1105535 (2012). 34.Jerby-Arnon, L. et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158, 1199-1209, doi:10.1016/j.cell.2014.07.027 (2014). 35.Guo, J., Liu, H. & Zheng, J. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res 44, D1011-1017, doi:10.1093/nar/gkv1108 (2016). 36.Ashley, E. A. Towards precision medicine. Nat Rev Genet 17, 507-522, doi:10.1038/nrg.2016.86 (2016). 37.Colella, S. et al. Molecular signatures of metastasis in head and neck cancer. Head Neck 30, 1273-1283, doi:10.1002/hed.20871 (2008). 38.Cortesina, G. & Martone, T. Molecular metastases markers in head and neck squamous cell carcinoma: review of the literature. Acta Otorhinolaryngol Ital 26, 317-325 (2006). 39.van Hooff, S. R. et al. Validation of a gene expression signature for assessment of lymph node metastasis in oral squamous cell carcinoma. J Clin Oncol 30, 4104-4110, doi:10.1200/JCO.2011.40.4509 (2012). 40.Zanaruddin, S. N. et al. Four-protein signature accurately predicts lymph node metastasis and survival in oral squamous cell carcinoma. Hum Pathol 44, 417-426, doi:10.1016/j.humpath.2012.06.007 (2013). 41.Rickman, D. S. et al. Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays. Oncogene 27, 6607-6622, doi:10.1038/onc.2008.251 (2008). 42.Zhang, J., Chiodini, R., Badr, A. & Zhang, G. The impact of next-generation sequencing on genomics. J Genet Genomics 38, 95-109, doi:10.1016/j.jgg.2011.02.003 (2011). 43.Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41, D955-961, doi:10.1093/nar/gks1111 (2013). 44.Shimada, K., Muhlich, J. L. & Mitchison, T. J. A tool for browsing the Cancer Dependency Map reveals functional connections between genes and helps predict the efficacy and selectivity of candidate cancer drugs. bioRxiv, 2019.2012.2013.874776, doi:10.1101/2019.12.13.874776 (2019). 45.Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer 1, 235-248, doi:10.1038/s43018-019-0018-6 (2020). 46.Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151-1161, doi:10.1016/j.cell.2013.08.003 (2013). 47.Zhao, M., Mishra, L. & Deng, C. X. The role of TGF-beta/SMAD4 signaling in cancer. Int J Biol Sci 14, 111-123, doi:10.7150/ijbs.23230 (2018). 48.Subramanian, A. et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 171, 1437-1452 e1417, doi:10.1016/j.cell.2017.10.049 (2017). 49.Xu, C., Nezami Ranjbar, M. R., Wu, Z., DiCarlo, J. & Wang, Y. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller. BMC Genomics 18, 5, doi:10.1186/s12864-016-3425-4 (2017). 50.Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41, D793-800, doi:10.1093/nar/gks1055 (2013). 51.Martini, N. & McCormack, P. M. Evolution of the surgical management of pulmonary metastases. Chest Surg Clin N Am 8, 13-27 (1998). 52.Kondo, H., Okumura, T., Ohde, Y. & Nakagawa, K. Surgical treatment for metastatic malignancies. Pulmonary metastasis: indications and outcomes. Int J Clin Oncol 10, 81-85, doi:10.1007/s10147-004-0472-7 (2005). 53.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25, doi:10.1186/gb-2009-10-3-r25 (2009). 54.Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57, doi:10.1038/nprot.2008.211 (2009). 55.Kramer, A., Green, J., Pollard, J., Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523-530, doi:10.1093/bioinformatics/btt703 (2014). 56.Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47, D607-D613, doi:10.1093/nar/gky1131 (2019). 57.Ribble, D., Goldstein, N. B., Norris, D. A. & Shellman, Y. G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5, 12, doi:10.1186/1472-6750-5-12 (2005). 58.Liu, K., Liu, P. C., Liu, R. & Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 21, 15-20, doi:10.12659/MSMBR.893327 (2015). 59.Tsan, D. L. et al. The comparison between weekly and three-weekly cisplatin delivered concurrently with radiotherapy for patients with postoperative high-risk squamous cell carcinoma of the oral cavity. Radiat Oncol 7, 215, doi:10.1186/1748-717X-7-215 (2012). 60.Oosting, S. F. et al. A comparison of weekly versus 3-weekly cisplatin during adjuvant radiotherapy for high-risk head and neck cancer. Oral Oncol 59, 43-49, doi:10.1016/j.oraloncology.2016.05.016 (2016). 61.Szturz, P. et al. Weekly Low-Dose Versus Three-Weekly High-Dose Cisplatin for Concurrent Chemoradiation in Locoregionally Advanced Non-Nasopharyngeal Head and Neck Cancer: A Systematic Review and Meta-Analysis of Aggregate Data. Oncologist 22, 1056-1066, doi:10.1634/theoncologist.2017-0015 (2017). 62.Fesneau, M. et al. Concomitant chemoradiotherapy using carboplatin, tegafur-uracil and leucovorin for stage III and IV head-and-neck cancer: results of GORTEC Phase II study. Int J Radiat Oncol Biol Phys 76, 154-163, doi:10.1016/j.ijrobp.2009.01.033 (2010). 63.Chan, D. A. & Giaccia, A. J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10, 351-364, doi:10.1038/nrd3374 (2011). 64.Fang, B. Development of synthetic lethality anticancer therapeutics. J Med Chem 57, 7859-7873, doi:10.1021/jm500415t (2014). 65.Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17, 405-424, doi:10.1038/gim.2015.30 (2015). 66.Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929-1935, doi:10.1126/science.1132939 (2006). 67.Gagan, J. & Van Allen, E. M. Next-generation sequencing to guide cancer therapy. Genome Med 7, 80, doi:10.1186/s13073-015-0203-x (2015). 68.Lilley, E. J., Cooper, Z., Schwarze, M. L. & Mosenthal, A. C. Palliative Care in Surgery: Defining the Research Priorities. Ann Surg 267, 66-72, doi:10.1097/SLA.0000000000002253 (2018). 69.Syed, V. TGF-beta Signaling in Cancer. J Cell Biochem 117, 1279-1287, doi:10.1002/jcb.25496 (2016). 70.Zhao, Y. et al. TGF-beta transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol Oncol 12, 305-321, doi:10.1002/1878-0261.12162 (2018). 71.Zhang, Y. et al. The canonical TGF-beta/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir Res 20, 164, doi:10.1186/s12931-019-1137-4 (2019). 72.Wang, T. et al. The TGFbeta-miR-499a-SHKBP1 pathway induces resistance to EGFR inhibitors in osteosarcoma cancer stem cell-like cells. J Exp Clin Cancer Res 38, 226, doi:10.1186/s13046-019-1195-y (2019). 73.Ozawa, H. et al. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clin Cancer Res 23, 5162-5175, doi:10.1158/1078-0432.CCR-16-1686 (2017). 74.Cohen, E. E. W. et al. Biomarkers predict enhanced clinical outcomes with afatinib versus methotrexate in patients with second-line recurrent and/or metastatic head and neck cancer. Ann Oncol 28, 2526-2532, doi:10.1093/annonc/mdx344 (2017). 75.Galot, R. et al. Personalized biomarker-based treatment strategy for patients with squamous cell carcinoma of the head and neck: EORTC position and approach. Ann Oncol 29, 2313-2327, doi:10.1093/annonc/mdy452 (2018). 76.Moren, A., Raja, E., Heldin, C. H. & Moustakas, A. Negative regulation of TGFbeta signaling by the kinase LKB1 and the scaffolding protein LIP1. J Biol Chem 286, 341-353, doi:10.1074/jbc.M110.190660 (2011). 77.Rothenberg, S. M. & Ellisen, L. W. The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest 122, 1951-1957 (2012). 78.Lee, S. H. et al. Wnt/beta-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol 234, 99-107, doi:10.1002/path.4383 (2014). 79.Li, C., Egloff, A. M., Sen, M., Grandis, J. R. & Johnson, D. E. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol 8, 1220-1230, doi:10.1016/j.molonc.2014.03.018 (2014). 80.Mebratu, Y. & Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8, 1168-1175, doi:10.4161/cc.8.8.8147 (2009). 81.Gkretsi, V. & Stylianopoulos, T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front Oncol 8, 145, doi:10.3389/fonc.2018.00145 (2018). 82.Brabek, J., Mierke, C. T., Rosel, D., Vesely, P. & Fabry, B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal 8, 22, doi:10.1186/1478-811X-8-22 (2010). 83.O'Connell, T. M. The complex role of branched chain amino acids in diabetes and cancer. Metabolites 3, 931-945, doi:10.3390/metabo3040931 (2013). 84.Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8, 15267, doi:10.1038/ncomms15267 (2017). 85.Pavlova, N. N. & Thompson, C. B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23, 27-47, doi:10.1016/j.cmet.2015.12.006 (2016). 86.Hu, J. D. et al. Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS. World J Gastroenterol 17, 727-734, doi:10.3748/wjg.v17.i6.727 (2011). 87.Jin, H. et al. Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma. J Proteome Res 13, 4091-4103, doi:10.1021/pr500483z (2014). 88.Kamarajan, P. et al. Head and Neck Squamous Cell Carcinoma Metabolism Draws on Glutaminolysis, and Stemness Is Specifically Regulated by Glutaminolysis via Aldehyde Dehydrogenase. J Proteome Res 16, 1315-1326, doi:10.1021/acs.jproteome.6b00936 (2017). 89.Charafe-Jauffret, E. et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16, 45-55, doi:10.1158/1078-0432.CCR-09-1630 (2010). 90.Rodriguez-Torres, M. & Allan, A. L. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 33, 97-113, doi:10.1007/s10585-015-9755-9 (2016). 91.Tonjes, M. et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19, 901-908, doi:10.1038/nm.3217 (2013). 92.Ananieva, E. A. & Wilkinson, A. C. Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care 21, 64-70, doi:10.1097/MCO.0000000000000430 (2018). 93.Chien, C. Y. et al. Lower prevalence but favorable survival for human papillomavirus-related squamous cell carcinoma of tonsil in Taiwan. Oral Oncol 44, 174-179, doi:10.1016/j.oraloncology.2007.01.018 (2008). 94.Hwang, T. Z., Hsiao, J. R., Tsai, C. R. & Chang, J. S. Incidence trends of human papillomavirus-related head and neck cancer in Taiwan, 1995-2009. Int J Cancer 137, 395-408, doi:10.1002/ijc.29330 (2015).
|