跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林季緯
研究生(外文):Chi-Wei Lin
論文名稱:以大鼠間歇性缺氧與中大腦動脈阻塞模型探討中風後改善睡眠呼吸中止症對中風誘發的動物行為、生化參數及病生理傷害之影響
論文名稱(外文):The Restoration Effect of Sleep Apnea After Stroke on Behaviors, Biochemical Parameters and Pathophysiology by Using the Rat Models of Intermittent Hypoxia and Middle Cerebral Artery Occlusion
指導教授:楊靜修楊靜修引用關係郭博昭郭博昭引用關係
指導教授(外文):Cheryl C.H. YangTerry B.J. Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:睡眠呼吸中止症中風間歇性缺氧中大腦動脈阻塞心血管自律神經功能睡眠結構感覺行為生化參數認知行為腦波腦損傷
外文關鍵詞:sleep apneastrokeintermittent hypoxiamiddle cerebral artery occlusioncardiovascular autonomic functionsleep patternsensorimotor behaviorbiochemical parametercognitive behaviorbrain wavebrain damage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景: 睡眠呼吸中止 (Sleep apnea, SA) 合併中風會使中風後之腦損傷、生理訊號、生化參數及行為表現障礙加劇,但目前仍少有論文探討治療SA對其病生理參數之影響。因此,本研究使用Wistar-Kyoto rat (WKY) 大鼠,給予間歇性缺氧 (Intermittent hypoxia, IH) 合併中大腦動脈阻塞手術 (Middle cerebral artery occlusion, MCAO),模擬臨床上患有SA之中風患者。探討IH合併MCAO後若停止給予IH,是否可改善睡眠時自律神經、睡眠結構、生化參數、行為表現和腦部損傷。
研究方法: 給予WKY連續兩週每天八小時,每小時30次IH,隔天進行MCAO手術後分為持續給予一週IH之實驗組 (IH-IH) 及停止IH之治療組 (IH-RA),而控制組為MCAO前後皆給予一般空氣 (RA-RA),並利用大鼠無線多頻道生理紀錄儀記錄24小時生理訊號,MCAO前後進行感覺行為測試及抽血檢測氧化壓力生化指標,並於MCAO後第四至七天進行認知行為測試,犧牲後取腦染色計算梗塞面積及分析生化參數。
結果: 大鼠在IH合併MCAO後死亡率上升,且IH-IH組腦損傷較IH-RA組嚴重。其行為表現IH-IH組需較長的時間恢復,但認知測試無明顯差異。自律神經方面,睡眠時交感神經活性 (LF%及BLF) 三組皆在MCAO後上升持續一週,而副交感神經活性 (HF) 則發現MCAO後睡眠時IH-RA組上升,而IH-IH組則下降。睡眠結構中,IH-RA組在MCAO後,與RA-RA組無顯著差異,但IH-IH組安靜睡眠 (QS) 時間上升、歧異睡眠 (PS) 時間減少、清醒 (AW) 次數上升,其中睡眠深度腦波 (Delta%) 也較IH-RA組低。心跳間距 (RR) 在MCAO後IH-RA組較IH-IH組高。三組血壓皆升高,於MCAO第七天 (M7) IH-RA組有改善效果,而IH-IH組在MCAO第一天 (M1) 與IH-RA組及RA-RA組相比,感壓反射敏感度參數 (BrrA及BrrD) 較高。血液中丙二醛 (malondialdehyde, MDA) 表現量,MCAO後IH-IH組與IH-RA組無明顯差異,但組織中IH-RA組有下降趨勢。
結論: IH合併MCAO後若停止IH,可使睡眠副交感神經升高、心跳減緩、改善睡眠結構、提升睡眠品質、行為恢復較快且腦部損傷減少,但在交感神經活性、認知功能及血液中氧化壓力無明顯改善。
Introduction: Sleep apnea (SA) combine with stroke induces severer brain damage, change of biochemical parameters and pathophysiological behavior following stroke, but few studies discussed the effects of improving SA on physiological parameter. Thus, we stimulated stroke patients with SA by an animal model of intermittent hypoxia (IH) combined with middle cerebral artery occlusion (MCAO) on Wistar-Kyoto rat (WKY), whether stop giving IH after MCAO will improve sleep autonomic unnormal, sleep pattern problem, change of biochemical parameters, behavior dysregulation and brain damage.
Methods and Materials: WKY with continuous IH of two weeks (8 hours/day, 30 times/hour) were randomly divided into IH-IH group (continuous IH one week) and IH-RA group (no IH) next day after MCAO. The control group all received room air (RA-RA). We recorded physiological signal wuth wireless polysomnography. During IH and following MCAO, we tested sensorimotor behavior (adhesive remove test, grip test) and oxidative stress biomarkers in serum. All groups were tested with cognitive ability after MCAO. We assessed the brain infarct volume with 2% triphenyl tetrazollium chloride (TTC) and tested biochemical biomarker after sacrifice.
Results: IH combined MCAO caused high mortality rate. IH-IH has severer brain damage and longer recovery period in sensorimotor behavior than IH-RA, but cognitive test has no difference. Sleep related sympathetic activity (LF%, BLF) increased for one week after MCAO in three groups. Sleep related parasympathetic activity (HF) increased in IH-RA and IH-IH decreased after MCAO. In sleep pattern after MCAO, IH-RA is similar with RA-RA, but IH-IH has more quiet sleep (QS) time, more awake (AW) number, less paradoxical sleep (PS) time and lower delta% than IH-RA. RR interval (RR) elevated after MCAO in IH-RA. Mean arterial pressure (MAP) raised among three groups and IH-RA improved it in M7. Baroreflex sensitivity (BrrA, BrrD) in IH-IH were higher than IH-RA and RA-RA in M1. The express of malondialdehyde (MDA) in serum is no difference in IH-IH and IH-RA, but IH-RA lower than IH-IH in tissue.
Conclusion: Relieve of IH after stroke has raising sleep parasympathetic activity, slow heart rate, improved sleep pattern, great quality of sleep, rapid recovery and less brain damage. But it has not significant effect in sleep sympathetic activity, cognitive and oxidative stress in blood were not improve.
目次
中文摘要..................................................i
Abstract................................................ii
目錄...................................................iii
圖目錄..................................................iv
研究背景介紹..............................................1
前言.....................................................1
睡眠呼吸中止症............................................1
睡眠呼吸中止症對大腦缺血性傷害之影響........................2
睡眠呼吸中止症對中風後認知功能之影響........................3
睡眠呼吸中止症合併中風之後續治療方向........................3
利用動物模式研究睡眠呼吸中止症及中風之必要性................4
間歇性缺氧動物模型........................................5
中風動物模式..............................................5
間歇性缺氧加劇MCAO造成各種功能損害之潛在病理因子............6
循環變異性參數與自律神經系統...............................7
腦波、腦波頻譜分析及睡眠...................................9
自律神經系統與睡眠對血壓之調控............................10
間歇性缺氧對心血管自律神經系統與睡眠之影響.................11
自律神經系統與睡眠對MCAO之影響............................12
間歇性缺氧引發氧化壓力及發炎反應之影響.....................13
研究動機與假說...........................................14
目標....................................................16
重要性..................................................18
研究材料與方法...........................................19
動物選擇與處理...........................................19
動脈壓測量手術操作.......................................19
自製無線睡眠測量系統手術操作..............................19
訊號收集.................................................20
睡眠及自律神經分析方法....................................21
心電與血壓訊號處理.......................................22
實驗流程.................................................24
中大腦動脈栓塞手術.......................................24
間歇性缺氧動物模式.......................................25
各項行為測試.............................................25
尾部採血方法.............................................26
腦組織切片染色及均質化處理................................26
生化指標表現量測量方法....................................27
統計分析.................................................27
實驗結果.................................................28
大鼠飲食、體重變化及MCAO後死亡率..........................28
MCAO後腦部損傷...........................................28
認知行為表現及貼紙移除、抓握測驗..........................29
血壓變化、感壓反射及心跳..................................29
自律神經變化.............................................29
睡眠結構及腦波改變.......................................30
血液中及大腦氧化壓力指標變化..............................31
討論....................................................32
本篇優點及重要發現.......................................32
生化參數之討論...........................................32
認知行為討論.............................................33
改善MCAO後自律神經失調...................................34
本篇論文未來目標及應用價值................................34
結論....................................................36
參考文獻.................................................37
附圖....................................................45

圖表目錄
圖一、大鼠間歇性缺氧 (intermittent hypoxia, IH) 模型......45
圖二、大鼠中大腦動脈阻塞手術 (middle cerebral occlusion, MCAO) 模型..............................................46
圖三、實驗流程圖.........................................47
圖四、大鼠在光亮週期八小時及一小時生理訊號原始圖...........48
圖五、大鼠在中大腦動脈阻塞手術 (MCAO) 前後之體重、飲食量及MCAO後死亡率 ................................................51
圖六、RA-RA組、IH-IH組及IH-RA組之大腦損傷區域大小.........53
圖七、RA-RA組、IH-IH組及IH-RA組之貼紙移除測試 (Adhesive Remove Test) 和抓握測試 (Grip Test) 行為表現.............55
圖八、RA-RA組、IH-IH組及IH-RA組之八臂測試 (Eight-arm radial maze) 行為表現...........................................57
圖九、RA-RA組、IH-IH組及IH-RA組在中大腦動脈阻塞手術 (MCAO) 前後給予間歇性缺氧 (IH) 或一般空氣期間醒睡分期下之醒睡時血壓變化及心跳間距之數值.........................................59
圖十、RA-RA組、IH-IH組及IH-RA組在中大腦動脈阻塞手術 (MCAO) 前後給予間歇性缺氧 (IH) 或一般空氣期間醒睡分期下之醒睡時感壓反射靈敏度參數之數值.........................................60
圖十一、RA-RA組、IH-IH組及IH-RA組在中大腦動脈阻塞手術 (MCAO) 前後給予間歇性缺氧 (IH) 或一般空氣期間醒睡分期下之醒睡時心血管交感神經活性參數之數值....................................62
圖十二、RA-RA組、IH-IH組及IH-RA組在中大腦動脈阻塞手術 (MCAO) 前後給予間歇性缺氧 (IH) 或一般空氣期間醒睡分期下之醒睡時副交感神經活性參數之數值.......................................63
圖十三、RA-RA組、IH-IH組及IH-RA組在中大腦動脈阻塞手術 (MCAO) 前後給予間歇性缺氧 (IH) 或一般空氣期間醒睡分期下之醒睡分期下之睡眠結構 ................................................65
圖十四、RA-RA組、IH-IH組及IH-RA組在中大腦動脈阻塞手術 (MCAO) 前後給予間歇性缺氧 (IH) 或一般空氣期間醒睡分期下之醒睡分期下之腦波....................................................66
圖十五、RA-RA組、IH-IH組及IH-RA組在給予間歇性缺氧 (IH) 前、第二週和中大腦動脈阻塞手術 (MCAO) 後第七天之血清及大腦內脂質過氧化物 (malondialdehyde, MDA) 表現量.......................67
1. Lowe, C.J., A. Safati, and P.A. Hall, The neurocognitive consequences of sleep restriction: A meta-analytic review. Neurosci Biobehav Rev, 2017. 80: p. 586-604.
2. Mander, B.A., et al., Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's Disease? Trends Neurosci, 2016. 39(8): p. 552-566.
3. Stark, C.D. and R.J. Stark, Sleep and chronic daily headache. Curr Pain Headache Rep, 2015. 19(1): p. 468.
4. Tobaldini, E., et al., Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev, 2017. 74(Pt B): p. 321-329.
5. Munoz, R., et al., Severe sleep apnea and risk of ischemic stroke in the elderly. Stroke, 2006. 37(9): p. 2317-21.
6. Good, D.C., et al., Sleep-disordered breathing and poor functional outcome after stroke. Stroke, 1996. 27(2): p. 252-9.
7. Kaneko, Y., et al., Relationship of sleep apnea to functional capacity and length of hospitalization following stroke. Sleep, 2003. 26(3): p. 293-7.
8. Wan, N.S., et al., [The effects of chronic intermittent hypoxia on blood pressure and sympathetic nerve activity in rats]. Zhonghua Jie He He Hu Xi Za Zhi, 2012. 35(1): p. 29-32.
9. Oyarce, M.P. and R. Iturriaga, Contribution of Oxidative Stress and Inflammation to the Neurogenic Hypertension Induced by Intermittent Hypoxia. Front Physiol, 2018. 9: p. 893.
10. Gao, H., et al., Intermittent hypoxia caused cognitive dysfunction relate to miRNAs dysregulation in hippocampus. Behav Brain Res, 2017. 335: p. 80-87.
11. Kapur, V.K., et al., Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med, 2017. 13(3): p. 479-504.
12. Senaratna, C.V., et al., Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med Rev, 2017. 34: p. 70-81.
13. Sutherland, K., R.W. Lee, and P.A. Cistulli, Obesity and craniofacial structure as risk factors for obstructive sleep apnoea: impact of ethnicity. Respirology, 2012. 17(2): p. 213-22.
14. Javaheri, S., et al., Sleep Apnea: Types, Mechanisms, and Clinical Cardiovascular Consequences. J Am Coll Cardiol, 2017. 69(7): p. 841-858.
15. McKee, Z. and D.H. Auckley, A sleeping beast: Obstructive sleep apnea and stroke. Cleve Clin J Med, 2019. 86(6): p. 407-415.
16. Mims, K.N. and D. Kirsch, Sleep and Stroke. Sleep Med Clin, 2016. 11(1): p. 39-51.
17. Gupta, A., et al., Role of Positive Airway Pressure Therapy for Obstructive Sleep Apnea in Patients With Stroke: A Randomized Controlled Trial. J Clin Sleep Med, 2018. 14(4): p. 511-521.
18. Parra, O., et al., Early treatment of obstructive apnoea and stroke outcome: a randomised controlled trial. Eur Respir J, 2011. 37(5): p. 1128-36.
19. Sanchez-de-la-Torre, M., F. Campos-Rodriguez, and F. Barbe, Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med, 2013. 1(1): p. 61-72.
20. Marin, J.M., et al., Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet, 2005. 365(9464): p. 1046-53.
21. Ifergane, G., et al., Obstructive Sleep Apnea in Acute Stroke: A Role for Systemic Inflammation. Stroke, 2016. 47(5): p. 1207-12.
22. Lavie, L., Sleep-disordered breathing and cerebrovascular disease: a mechanistic approach. Neurol Clin, 2005. 23(4): p. 1059-75.
23. Beaudin, A.E., et al., Human intermittent hypoxia-induced respiratory plasticity is not caused by inflammation. Eur Respir J, 2015. 46(4): p. 1072-83.
24. Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996. 271(5 Pt 1): p. C1424-37.
25. Redline, S., et al., Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med, 2010. 182(2): p. 269-77.
26. Lal, C., C. Strange, and D. Bachman, Neurocognitive impairment in obstructive sleep apnea. Chest, 2012. 141(6): p. 1601-1610.
27. Verstraeten, E., et al., Executive function in sleep apnea: controlling for attentional capacity in assessing executive attention. Sleep, 2004. 27(4): p. 685-93.
28. Row, B.W., Intermittent hypoxia and cognitive function: implications from chronic animal models. Adv Exp Med Biol, 2007. 618: p. 51-67.
29. Caselli, R.J., Obstructive sleep apnea, apolipoprotein E e4, and mild cognitive impairment. Sleep Med, 2008. 9(8): p. 816-7.
30. May, A.M. and R. Mehra, Obstructive sleep apnea: role of intermittent hypoxia and inflammation. Semin Respir Crit Care Med, 2014. 35(5): p. 531-44.
31. Kheirandish, L., et al., Apolipoprotein E-deficient mice exhibit increased vulnerability to intermittent hypoxia-induced spatial learning deficits. Sleep, 2005. 28(11): p. 1412-7.
32. Row, B.W., et al., Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med, 2003. 167(11): p. 1548-53.
33. Pendlebury, S.T. and P.M. Rothwell, Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol, 2009. 8(11): p. 1006-18.
34. Mair, G. and J.M. Wardlaw, Imaging of acute stroke prior to treatment: current practice and evolving techniques. Br J Radiol, 2014. 87(1040): p. 20140216.
35. Semelka, M., J. Wilson, and R. Floyd, Diagnosis and Treatment of Obstructive Sleep Apnea in Adults. Am Fam Physician, 2016. 94(5): p. 355-60.
36. Mello-Fujita, L., et al., Treatment of obstructive sleep apnea syndrome associated with stroke. Sleep Med, 2015. 16(6): p. 691-6.
37. Gonzaga, C., et al., Obstructive sleep apnea, hypertension and cardiovascular diseases. J Hum Hypertens, 2015. 29(12): p. 705-12.
38. Fletcher, E.C., et al., Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension, 1992. 19(6 Pt 1): p. 555-61.
39. Davis, E.M. and C.P. O'Donnell, Rodent models of sleep apnea. Respir Physiol Neurobiol, 2013. 188(3): p. 355-61.
40. Park, A.M. and Y.J. Suzuki, Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol (1985), 2007. 102(5): p. 1806-14.
41. Lai, C.J., et al., Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol (1985), 2006. 100(6): p. 1974-82.
42. Bederson, J.B., et al., Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 1986. 17(3): p. 472-6.
43. Wayman, C., et al., Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability. J Vis Exp, 2016(108): p. 53106.
44. Fluri, F., M.K. Schuhmann, and C. Kleinschnitz, Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther, 2015. 9: p. 3445-54.
45. Koketsu, N., et al., Pretreatment with intraventricular basic fibroblast growth factor decreases infarct size following focal cerebral ischemia in rats. Ann Neurol, 1994. 35(4): p. 451-7.
46. Huang, S.S., et al., Suppressing cardiac vagal modulation and changing sleep patterns in rats after chronic ischemic stroke injury. Auton Neurosci, 2012. 169(2): p. 116-23.
47. Brown, D.L., et al., Brainstem infarction and sleep-disordered breathing in the BASIC sleep apnea study. Sleep Med, 2014. 15(8): p. 887-91.
48. Rosenzweig, I., et al., Sleep apnoea and the brain: a complex relationship. Lancet Respir Med, 2015. 3(5): p. 404-14.
49. Li, T., et al., Elevated Oxidative Stress and Inflammation in Hypothalamic Paraventricular Nucleus Are Associated With Sympathetic Excitation and Hypertension in Rats Exposed to Chronic Intermittent Hypoxia. Front Physiol, 2018. 9: p. 840.
50. Foster, G.E., M.J. Poulin, and P.J. Hanly, Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol, 2007. 92(1): p. 51-65.
51. Yang, X., et al., Cardiac Sympathetic Denervation Suppresses Atrial Fibrillation and Blood Pressure in a Chronic Intermittent Hypoxia Rat Model of Obstructive Sleep Apnea. J Am Heart Assoc, 2019. 8(4): p. e010254.
52. Wolf, G.K., G.G. Belz, and M. Stauch, Systolic time intervals--correction for heart rate. Basic Res Cardiol, 1978. 73(1): p. 85-96.
53. Schwartz, P.J., M.T. La Rovere, and E. Vanoli, Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation, 1992. 85(1 Suppl): p. I77-91.
54. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J, 1996. 17(3): p. 354-81.
55. Kuo, T.B., et al., Diminished vasomotor component of systemic arterial pressure signals and baroreflex in brain death. Am J Physiol, 1997. 273(3 Pt 2): p. H1291-8.
56. Yien, H.W., et al., Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for the prediction of patient outcome in the intensive care unit. Crit Care Med, 1997. 25(2): p. 258-66.
57. Kuo, T.B., C.C. Yang, and S.H. Chan, Selective activation of vasomotor component of SAP spectrum by nucleus reticularis ventrolateralis in rats. Am J Physiol, 1997. 272(1 Pt 2): p. H485-92.
58. Kuo, T.B. and C.C. Yang, Altered frequency characteristic of central vasomotor control in SHR. Am J Physiol Heart Circ Physiol, 2000. 278(1): p. H201-7.
59. Kuo, T.B. and C.C. Yang, Sleep-related changes in cardiovascular neural regulation in spontaneously hypertensive rats. Circulation, 2005. 112(6): p. 849-54.
60. Diekelmann, S. and J. Born, The memory function of sleep. Nat Rev Neurosci, 2010. 11(2): p. 114-26.
61. Dingli, K., et al., Electroencephalographic spectral analysis: detection of cortical activity changes in sleep apnoea patients. Eur Respir J, 2002. 20(5): p. 1246-53.
62. Naylor, E., et al., The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci, 2000. 20(21): p. 8138-43.
63. Neckelmann, D. and R. Ursin, Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep, 1993. 16(5): p. 467-77.
64. Walker, M.P., The role of sleep in cognition and emotion. Ann N Y Acad Sci, 2009. 1156: p. 168-97.
65. Marshall, L., et al., Boosting slow oscillations during sleep potentiates memory. Nature, 2006. 444(7119): p. 610-3.
66. Dampney, R.A., et al., Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res, 1982. 249(2): p. 223-35.
67. Julius, S., Autonomic nervous system dysregulation in human hypertension. Am J Cardiol, 1991. 67(10): p. 3b-7b.
68. Smolensky, M.H., et al., Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med, 2007. 8(6): p. 668-80.
69. Nagai, M., S. Hoshide, and K. Kario, Sleep duration as a risk factor for cardiovascular disease- a review of the recent literature. Curr Cardiol Rev, 2010. 6(1): p. 54-61.
70. Kuo, T.B., et al., Changes in sleep patterns in spontaneously hypertensive rats. Sleep, 2004. 27(3): p. 406-12.
71. Kuo, T.B., et al., Sleep-related sympathovagal imbalance in SHR. Am J Physiol Heart Circ Physiol, 2004. 286(3): p. H1170-6.
72. Chang, L.R., et al., Cardiac autonomic modulation during methadone therapy among heroin users: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry, 2012. 37(1): p. 188-93.
73. Chen, C.Y., et al., Electrical stimulation of the rostral ventrolateral medulla promotes wakefulness in rats. Sleep Med, 2013. 14(11): p. 1076-84.
74. Drager, L.F., et al., Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol, 2015. 309(7): p. H1101-11.
75. Barnett, W.H., et al., Chemoreception and neuroplasticity in respiratory circuits. Exp Neurol, 2017. 287(Pt 2): p. 153-164.
76. Mifflin, S., J.T. Cunningham, and G.M. Toney, Neurogenic mechanisms underlying the rapid onset of sympathetic responses to intermittent hypoxia. J Appl Physiol (1985), 2015. 119(12): p. 1441-8.
77. Stepnowsky, C.J., et al., Fatigue in sleep apnea: the role of depressive symptoms and self-reported sleep quality. Sleep Med, 2011. 12(9): p. 832-7.
78. Yang, C.C., et al., Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in humans. Neurosci Lett, 2002. 329(2): p. 213-6.
79. Kuo, T.B., et al., Asymmetry in sympathetic and vagal activities during sleep-wake transitions. Sleep, 2008. 31(3): p. 311-20.
80. Langhorne, P., et al., Medical complications after stroke: a multicenter study. Stroke, 2000. 31(6): p. 1223-9.
81. Chamorro, A., X. Urra, and A.M. Planas, Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke, 2007. 38(3): p. 1097-103.
82. Kamel, H. and C. Iadecola, Brain-immune interactions and ischemic stroke: clinical implications. Arch Neurol, 2012. 69(5): p. 576-81.
83. Chamorro, A., et al., Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci, 2007. 252(1): p. 29-35.
84. Butcher, K.S., et al., Cardiac and sympathetic effects of middle cerebral artery occlusion in the spontaneously hypertensive rat. Brain Res, 1993. 621(1): p. 79-86.
85. Ay, I., et al., Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia. Neurosci Lett, 2009. 459(3): p. 147-51.
86. Elenkov, I.J., et al., The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev, 2000. 52(4): p. 595-638.
87. Gao, B., et al., Sleep disruption aggravates focal cerebral ischemia in the rat. Sleep, 2010. 33(7): p. 879-87.
88. Barnham, K.J., C.L. Masters, and A.I. Bush, Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 2004. 3(3): p. 205-14.
89. Snyder, B., et al., Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol Rep, 2017. 5(9).
90. Zhan, G., et al., NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med, 2005. 172(7): p. 921-9.
91. Lavie, L., Obstructive sleep apnoea syndrome--an oxidative stress disorder. Sleep Med Rev, 2003. 7(1): p. 35-51.
92. Waki, H., et al., Junctional adhesion molecule-1 is upregulated in spontaneously hypertensive rats: evidence for a prohypertensive role within the brain stem. Hypertension, 2007. 49(6): p. 1321-7.
93. Waki, H., et al., Evidence of specific inflammatory condition in nucleus tractus solitarii of spontaneously hypertensive rats. Exp Physiol, 2010. 95(5): p. 595-600.
94. Iturriaga, R., M.P. Oyarce, and A.C.R. Dias, Role of Carotid Body in Intermittent Hypoxia-Related Hypertension. Curr Hypertens Rep, 2017. 19(5): p. 38.
95. Del Rio, R., E.A. Moya, and R. Iturriaga, Differential expression of pro-inflammatory cytokines, endothelin-1 and nitric oxide synthases in the rat carotid body exposed to intermittent hypoxia. Brain Res, 2011. 1395: p. 74-85.
96. Kuo, T.B. and C.C. Yang, Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions. Sleep, 2004. 27(4): p. 648-56.
97. Li, J.Y., et al., Changes in electroencephalogram and heart rate during treadmill exercise in the rat. Neurosci Lett, 2008. 434(2): p. 175-8.
98. Lin, Y.H., et al., Physiological and psychological impacts on male medical interns during on-call duty. Stress, 2012. 15(1): p. 21-30.
99. Kuo, T.B., et al., Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats. J Cardiovasc Electrophysiol, 2005. 16(8): p. 864-9.
100. Yang, C.C., et al., Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats. Neurosci Lett, 2003. 336(1): p. 21-4.
101. Bouet, V., et al., The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc, 2009. 4(10): p. 1560-4.
102. Gupta, S., et al., Neuroprotective effect of lercanidipine in middle cerebral artery occlusion model of stroke in rats. Exp Neurol, 2017. 288: p. 25-37.
103. Shin, M.S., et al., Neuroprotective Effects of Bone Marrow Stromal Cell Transplantation in Combination With Treadmill Exercise Following Traumatic Brain Injury. Int Neurourol J, 2016. 20(Suppl 1): p. S49-56.
104. Zhao, J., et al., 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects human umbilical vein endothelial cells against lysophosphatidylcholine-induced apoptosis by upregulating superoxide dismutase and glutathione peroxidase. IUBMB Life, 2014. 66(10): p. 711-22.
105. Gu, Y., J. Chen, and J. Shen, Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J Neuroimmune Pharmacol, 2014. 9(3): p. 313-39.
106. Chopp, M., et al., Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab, 1996. 16(4): p. 578-84.
107. Wang, W., et al., Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral ischemia. Brain Res, 2004. 1023(1): p. 92-101.
108. Xie, M., et al., Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol, 2011. 70(1): p. 121-32.
109. Dzierzewski, J.M., N. Dautovich, and S. Ravyts, Sleep and Cognition in Older Adults. Sleep Med Clin, 2018. 13(1): p. 93-106.
110. Lo Coco, D., G. Lopez, and S. Corrao, Cognitive impairment and stroke in elderly patients. Vasc Health Risk Manag, 2016. 12: p. 105-16.
111. Su, X., et al., 'Governor vessel-unblocking and mind-regulating' acupuncture therapy ameliorates cognitive dysfunction in a rat model of middle cerebral artery occlusion. Int J Mol Med, 2019. 43(1): p. 221-232.
112. Yoshida, T., et al., The effect of the bedtime-dosing doxazosin on nocturnal hypoxia-triggered blood pressure surge in a young adult man with severe obstructive sleep apnea syndrome and a history of three recurrent sleep-onset strokes. Blood Press Monit, 2017. 22(3): p. 173-174.
113. Kario, K., et al., Effects of nighttime single-dose administration of vasodilating vs sympatholytic antihypertensive agents on sleep blood pressure in hypertensive patients with sleep apnea syndrome. J Clin Hypertens (Greenwich), 2014. 16(6): p. 459-66.
114. Ferreira, C.B., et al., Brainstem areas activated by intermittent apnea in awake unrestrained rats. Neuroscience, 2015. 297: p. 262-71.
電子全文 電子全文(網際網路公開日期:20250810)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊