[1]方禹涵(2019)。開拓 AI、VR 潛能,看 5G 如何顛覆「未來製造業」。TechOrange。https://buzzorange.com/techorange/2019/08/05/5g-new-era-of-manufacturing/。
[2]張殷綺(2017)。預測性維護讓製造業降低營運成本。DIGITIMES。http://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=&cat2=&id=0000519761_9348ENWW5PYQM72SCK7GT&social_share=y。
[3]金屬工業研究發展中心(2019)。傳產升級智慧製造第一步-模具與廢料處理成本如何聰明省下來?。TechOrange。 https://buzzorange.com/techorange/2019/05/15/smart-manufacturing-in-metal-industry/。
[4]廖家宜(2019)。設備維護管理從預防性走向預測性 可望減少70%故障機率。DIGITIMES。https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=10&id=0000568761_40A8EEYG5CPSR22T51KK6。
[5]Scully, P. (2019). Predictive Maintenance initiatives saved organizations $17B in 2018, as the number of vendors surges. IoT Analytics. https://iot-analytics.com/numbers-of-predictive-maintenance-vendors-surges/。
[6]Chuang, A. (2019)。AI驅動智慧製造加速發展。EE Times Taiwan 電子工程專輯網。https://www.eettaiwan.com/news/article/20190924NT11-AI-drive-smart-manufacturing-development。
[7]TrendForce(2019)。2022年智慧製造市場規模將近3,700億美元。EE Times Taiwan 電子工程專輯網。https://www.eettaiwan.com/news/article/20190823NT21-Smart-manufacturing
[8]Kennedy, S. (2017). RxM: What is prescriptive maintenance, and how soon will you need it?. Plant Services.
https://www.plantservices.com/articles/2017/rxm-what-is-prescriptive-maintenance-and-how-soon-will-you-need-it/。
[9]林以真(2013)。針對不平衡資料鑑別分析之二項隨機子空間分類法。輔仁大學統計資訊學系應用統計碩士班,碩士論文。[10]林佳蒨(2012)。支援向量機於不平衡資料類別問題之應用。國立暨南國際大學資訊管理學系,碩士論文。[11]林冠宇(2014)。發展改良式支持向量資料描述改善不平衡資料分類。國立臺北科技大學工業工程與管理系所,碩士論文。[12]林鼎家(2013)。比較特徵選擇與特徵擷取方法在評估中文適讀性的效果。國立嘉義大學資訊工程學系研究所,碩士論文。[13]許哲彰(2019)。不平衡數據的機器學習發展暨可視化辨識模型之應用。國立中央大學機械工程學系,博士論文。[14]郭皇志(2018)。晶圓切割之不平衡資料集的分類。國立成功大學工業與資訊管理學系碩士在職專班,碩士論文。[15]張智綸(2018)。引進預測性維護之探討- 以鍛造模具設備為例。國立臺灣科技大學工業管理系碩士班,碩士論文。[16]張乃楠(2018)。基於混合方法探究不平衡數據分類問題。元智大學資訊工程學系,碩士論文。[17]陳逸真(2017)。不平衡資料分類方法之比較,國立臺北大學統計學系。碩士論文。[18]楊志隆(2016)。應用合議法改善不平衡資料分類流程之研究。國防大學運籌管理學系,碩士論文。[19]鄧惟中(2019)。一個結合極限梯度提升分類模型與關鍵字抽出方法的釣魚網站偵測服務架構。國立臺灣科技大學資訊工程系,碩士論文。
[20]劉順富(2019)。用 XGBOOST 演算法預測台灣指數期貨。國立雲林科技大學財務金融系,碩士論文。[21]蕭凱駿(2019)。應用集成方法於半導體蝕刻製程晶圓分類之研究。國立臺灣科技大學工業管理系,碩士論文。[22]龔健生(2016)。分類技術於類別不平衡資料集之研究。國立中央大學資訊管理學系在職專班,碩士論文。[23]Anukrishna, P. R., & Paul, V. (2017). A review on feature selection for high dimensional data. 2017 International Conference on Inventive Systems and Control (ICISC).
[24]Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S. R. (2019). Predicting the direction of stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552-567.
[25]Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839.
[26]Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. P., Basto, J., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
[27]Chawla, V., Bowyer, W., Hall, O., & Kegelmeyer, W. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357
[28]Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. KDD '16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.
[29]Chen, C., & Ge, Z. (2019). SVM-tree and SVM-forest algorithms for imbalanced fault classification in industrial processes. IFAC Journal of Systems and Control, 8, 100052.
[30]Dou, D., & Zhou, S. (2016). Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery. Applied Soft Computing, 46, 459-468.
[31]Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. & Herrera, F. (2012). A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42, 463-484.
[32]Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access, 5, 20590-20616.
[33]Hamerla, G., Meyer, H. J., Schob, S., Ginat, D. T., Altman, A., Lim, T., Gihr, G. A., Rizea, D. H., Hoffmann, K. T., & Surov, A. (2019). Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Magnetic Resonance Imaging, 63, 224-249.
[34]Hosseini, E. S., & Moattar, M. H. (2019). Evolutionary feature subsets selection based on interaction information for high dimensional imbalanced data classification. Applied Soft Computing, 82, 105581.
[35]Hung, Y., & Lai, S. (2019). The Survey of Predictive Maintenance and Cloud Computing. 2019 International Conference on Business, Economics and Management in the Age of Intelligence, 58.
[36]Ikram, S., & Cherukuri, A. (2017). Intrusion detection model using fusion of chi-square feature selection and multi class SVM. Journal of King Saud University - Computer and Information Sciences, 29, 4, 462-472.
[37]Jing, C., & Hou, J. (2015). SVM and PCA based fault classification approaches for complicated industrial process. Neurocomputing, 167, 636-642.
[38]Jović, A., Brkić, K., & Bogunović, N. (2015). A review of feature selection methods with applications. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).
[39]Karabadji, N. E, l., Seridi, H., Khelf, l., Azizi, N., & Boulkroune, R. (2014). Improved decision tree construction based on attribute selection and data sampling for fault diagnosis in rotating machines. Engineering Applications of Artificial Intelligence, 35, 71-83.
[40]Kim, A., Oh, K., Jung, J. Y., & Kim, B. (2017). Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles. International Journal of Computer Integrated Manufacturing, 31, 8, 701-717.
[41]Kumar, A., Chinnam, R., & Tseng, F. (2019). An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools. Computers & Industrial Engineering, 128, 1008-1014.
[42]Lee, J., Kao, H. A., & Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP, 16, 3-8.
[43]Lee J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42, 1-2, 314-334.
[44]Liu, Y., & Ge, Z. (2019). Deep ensemble forests for industrial fault classification. IFAC Journal of Systems and Control, 10, 100071.
[45]Liu, Y., & Ge, Z. (2018). Weighted random forests for fault classification in industrial processes with hierarchical clustering model selection. Journal of Process Control, 64, 62-70.
[46]Luo, L., Bao, S., & Peng, X. (2019). Robust monitoring of industrial processes using process data with outliers and missing values. Chemometrics and Intelligent Laboratory Systems, 192, 103827.
[47]Malhotra, R., & Kamal, S. (2019). An empirical study to investigate oversampling methods for improving software defect prediction using imbalanced data. Neurocomputing, 343, 120-140.
[48]Nobre, R., & Neves, R. F. (2019). Combining Principal Component Analysis, Discrete Wavelet Transform and XGBoost to trade in the financial markets. Expert Systems with Applications, 125, 181-194.
[49]Patel, R., & Giri, V. K. (2016). Feature selection and classification of mechanical fault of an induction motor using random forest classifier. Perspectives in Science, 8, 334-337.
[50]Pappu, V., & Pardalos, P. (2014). High-Dimensional Data Classification. Clusters, Orders, and Trees: Methods and Applications, pp119-150.
[51]Pandya, D. H. Upadhyay, S. H., & Harsha, S. P. (2013). Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Systems with Applications, 40, 10, 4137-4145.
[52]Sakthivel, N. R., Sugumaran, V., & Babudevasenapati, S. (2010). Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Systems with Applications, 37, 6, 4040-4049.
[53]Sarmiento, J. R. R., Monroy, J., Moreno, F. A., Galindo, C., Bonelo, J. M., & Jimenez, J. G. (2020). A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87, 103289.
[54]Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics, 11, 3, 812-820.
[55]Susto, G. A., Beghi, A., & Luca, C. (2012). A Predictive Maintenance System for Epitaxy Processes Based on Filtering and Prediction Techniques. IEEE Transactions on Semiconductor Manufacturing, 25, 638-649.
[56]Toroody, A., Abaei, M., Arzaghi, E., Toroody, F., Carloa, F., & Abbassi, R. (2019). Multi-level optimization of maintenance plan for natural gas system exposed to deterioration process. Journal of Hazardous Materials, 362, 15, 412-423.
[57]Wu, Z., Lin, W., & Ji, Y. (2018). An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics. IEEE Access, 6, 8394-8402.
[58]Zheng, J., Wang, H., Song, Z., & Ge, Z. (2019). Ensemble semi-supervised Fisher discriminant analysis model for fault classification in industrial processes. ISA Transactions, 92, 109-117.
[59]Zio, E., Baraldi, P., & Popescu, I, C. (2009). A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor. Annals of Nuclear Energy, 36, 8, 1159-1169.
[60]UCI資料庫。http://archive.ics.uci.edu/ml/datasets/secom。