跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭景翔
研究生(外文):Peng, Jing-Siang
論文名稱:採用交叉耦合技術改善無負載電容式低壓降穩壓器暫態響應之研究
論文名稱(外文):The Study of Transient Response Improvement for Output Capacitorless Low Dropout Regulator Based on Cross-Coupled Technique
指導教授:郭柏佑郭柏佑引用關係
指導教授(外文):Kuo, Po-Yu
口試委員:林淵翔楊博惠
口試委員(外文):Lin, Yuan-HsiangYang, Po-Hui
口試日期:2020-07-15
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:109
中文關鍵詞:無負載電容式之低壓降穩壓器交叉耦合技術暫態響應穩定時間
外文關鍵詞:Output Capacitorless Low Dropout RegulatorCross-Coupled TechniqueTransient ResponseSettling Time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
近年來許多可攜式或穿戴式電子產品在設計上都朝向短小輕薄之目標,由於這些產品皆採用電池供電設備,因此開發低功耗以延長電池壽命及體積小的電路已經成為主要的議題。低壓降穩壓器具有低雜訊和低功耗等特性,所以廣泛使用在各類電子產品中,然而,傳統的低壓降穩壓器雖能達到穩壓的效果,但卻無法同時達到低功耗以及快速的暫態響應等之需求。
本論文提出一個具有快速暫態響應的無負載電容式低壓降穩壓器,利用交叉耦合技術改善傳統運算放大器之暫態響應,進而提升低壓降穩壓器的暫態響應。本電路使用TSMC 0.18μm 1P6M CMOS 製程技術來實現,整個電路工作於1.2V供應電壓且並使用10pF負載電容來進行電路效能模擬。根據模擬結果,此電路可提供之最大輸出電流為100mA,整體直流增益可達到72.08 dB,且暫態穩定時間可達到0.28μs。
Recently, the design of many portable electronic device and wearable electronic device is aimed to small size. All of these products are battery-powered. Therefore, the development of circuits with low power consumption and small chip area has become the main issue. The conventional LDOs regulators has the characteristics of low noise and low power consumption and are widely used in many electronic products.
In this thesis, an output capacitorless low dropout regulator with fast transient response is proposed. By applying the cross-coupled technique, the transient response of the traditional operational amplifier is improved. Therefore, the transient response of the proposed low dropout regulator is improved. The low dropout regulator is implemented using TSMC 0.18μm 1P6M CMOS process and simulated with a 1.2V supply voltage. From the simulation results, this circuit can deliver a maximum load current of 100mA with a 10pF load. Moreover, it can achieve DC gain with 72.08 dB and fast transient response with 0.28μs.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表 目 錄 vii
圖 目 錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究方法 4
1.4 論文架構與簡介 6
第二章 無負載電容式低壓降穩壓器的基礎 7
2.1 穩壓器電路之文獻探討 7
2.2 低壓降穩壓器電路架構與應用 11
2.3 規格與特性 13
2.3.1 壓降電壓 (Dropout Voltage) 14
2.3.2 功率效率 (Power Efficiency) 16
2.3.3 靜態電流 (Quiescent Current) 17
2.3.4 電源電壓調整率 (Line Regulation) 19
2.3.5 負載調節率 (Load Regulation) 21
2.3.6 暫態響應 (Transient Response) 23
2.3.7 電源電壓抑制比 (Power Supply Rejection Ratio) 25
2.4 驅動傳輸電晶體介紹 26
2.5 傳統低壓降穩壓器電路架構 30
第三章 設計改良型無負載電容式之低壓降穩壓器 37
3.1 改良型無負載電容式之低壓降穩壓器設計流程 37
3.2 交叉耦合運算放大器之設計 39
3.2.1 運算放大器架構與簡介 39
3.2.2 交叉耦合式(Cross-Coupled, CC)誤差放大器 47
3.3 改良型無負載電容式低壓降穩壓器架構與原理 52
第四章 電路模擬結果與分析 60
4.1 改良型無負載電容式低壓降穩壓器模擬 60
4.1.1 交流分析 (Alternating Current Analysis) 61
4.1.2 直流分析 (Direct Current Analysis) 63
4.1.3 電源電壓調整率 (Line Regulation) 64
4.1.4 負載調節率 (Load Regulation) 66
4.1.5 暫態響應及穩定時間(Transient Response and Settling Time) 68
4.1.6 電源電壓抑制比 (Power Supply Rejection Ratio) 72
4.2 效能參數比較 75
4.3 晶片佈局 76
4.3.1 晶片佈局平面圖 77
4.3.2 晶片打線圖 78
4.3.3 晶片打線封裝圖 79
第五章 結論 80
參考文獻 81
附錄 89
1. 楊博惠 委員: 89
2. 林淵翔 委員: 94
3. 郭柏佑 委員: 98


[1]G. A. Rincon-Mora and P. E. Allen, "Optimized frequency-shaping circuit topologies for LDOs," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 6, pp. 703-708, 1998.
[2]M. Dongsheng, K. Wing-Hung, and T. Chi-Ying, "An integrated one-cycle control buck converter with adaptive output and dual loops for output error correction," IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 140-149, 2004.
[3]C.-M. Wang, C.-H. Lin, and T.-C. Yang, "High-power-factor soft-switched DC power supply system," IEEE transactions on Power Electronics, vol. 26, no. 2, pp. 647-654, 2010.
[4]J. J. Shieh, "Analysis and design of parallel-connected peak-current-mode-controlled switching DC∕DC power supplies," IEE Proceedings - Electric Power Applications, vol. 151, no. 4, p. 434, 2004.
[5]C. K. Chava and J. Silva-Martinez, "A frequency compensation scheme for LDO voltage regulators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 6, pp. 1041-1050, 2004.
[6]G. A. Rincon-Mora, "Active capacitor multiplier in Miller-compensated circuits," IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 26-32, 2000.
[7]P. Y. Kuo, S. D. Zhou, and Z. M. Lin, "A Low-Dropout Regulator with Low ESR, Low Line Regulation and High Currency Efficiency Using Low Output-Resistance Voltage Buffer," in 2007 IEEE Conference on Electron Devices and Solid-State Circuits, 2007, pp. 473-476.
[8]G. A. Rincon-Mora and P. E. Allen, "A low-voltage, low quiescent current, low drop-out regulator," IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 36-44, 1998.
[9]L. Ka Nang and P. K. T. Mok, "A CMOS voltage reference based on weighted ΔV/sub GS/ for CMOS low-dropout linear regulators," IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 146-150, 2003.
[10]G. R. Allen, P. C. Adell, D. Chen, and P. Musil, "Single-Event Transient Testing of Low Dropout PNP Series Linear Voltage Regulators," IEEE Transactions on Nuclear Science, vol. 59, no. 6, pp. 2764-2771, 2012.
[11]M. Al-Shyoukh, H. Lee, and R. Perez, "A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator With Buffer Impedance Attenuation," IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1732-1742, 2007.
[12]R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, "Full On-Chip CMOS Low-Dropout Voltage Regulator," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 9, pp. 1879-1890, 2007.
[13]L. Hoi, P. K. T. Mok, and L. Ka Nang, "Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 9, pp. 563-567, 2005.
[14]Y. Kim and S. Lee, "Fast transient capacitor-less LDO regulator using low-power output voltage detector," Electronics Letters, vol. 48, no. 3, pp. 175-177, 2012.
[15]L. Shen, Z. Yan, X. Zhang, Y. Zhao, and T. Lu, "Design of Low-Voltage Low-Dropout Regulator with Wide-Band High-PSR Characteristic," in 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, Shanghai, China, 2006, pp. 1751-1753.
[16]W. Huang and S. Liu, "PSRR-enhanced low-dropout regulator," Electronics Letters, vol. 47, no. 1, pp. 17-18, 2011.
[17]W. Jiake, J. Jinguang, L. Shanshan, G. Xu, and L. Qingyun, "A high stability low drop-out regulator with fast transient response," in 2010 IEEE International Conference on Wireless Communications, Networking and Information Security, 2010, pp. 561-565.
[18]W. Oh and B. Bakkaloglu, "A CMOS Low-Dropout Regulator With Current-Mode Feedback Buffer Amplifier," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 10, pp. 922-926, 2007.
[19]D. Dwibedy, S. Alapati, S. Patri, and K. Ksr, "Fully on chip low dropout (LDO) voltage regulator with improved transient response," in TENCON 2014 - 2014 IEEE Region 10 Conference, Bangkok, Thailand, 2014, pp. 1-5.
[20]Y. Kim and S. Lee, "A Capacitorless LDO Regulator With Fast Feedback Technique and Low-Quiescent Current Error Amplifier," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 6, pp. 326-330, 2013.
[21]X. Zhao, H. Fang, and J. Xu, "Phase-margin enhancement technique for recycling folded cascode amplifier," Analog Integrated Circuits and Signal Processing, vol. 74, no. 2, pp. 479-483, 2012.
[22]S. S. Chong and P. K. Chan, "Cross Feedforward Cascode Compensation for Low-Power Three-Stage Amplifier With Large Capacitive Load," IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2227-2234, 2012.
[23]K. N. Leung and P. K. Mok, "Analysis of multistage amplifier-frequency compensation," IEEE transactions on circuits and systems I: fundamental theory and applications, vol. 48, no. 9, pp. 1041-1056, 2001.
[24]M. M. Amourah and R. L. Geiger, "Gain and bandwidth boosting techniques for high-speed operational amplifiers," in ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No. 01CH37196), 2001, vol. 1, pp. 232-235: IEEE.
[25]K. N. Leung and P. K. Mok, "Nested Miller compensation in low-power CMOS design," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 4, pp. 388-394, 2001.
[26]Y. P. Tsividis and P. R. Gray, "An integrated NMOS operational amplifier with internal compensation," IEEE Journal of Solid-State Circuits, vol. 11, no. 6, pp. 748-753, 1976.
[27]F. Rezaei and S. J. Azhari, "A Highly Linear Operational Transconductance Amplifier (OTA) with High Common Mode Rejection Ratio," in 2010 International Conference on Signal Acquisition and Processing, Bangalore, 2010, pp. 18-22.
[28]A. Lewinski and J. Silva-Martinez, "OTA linearity enhancement technique for high frequency applications with IM3 below -65dB," in Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003., San Jose, CA, USA, USA, 2003, pp. 9-12.
[29]A. Maity and A. Patra, "A Hybrid-Mode Operational Transconductance Amplifier for an Adaptively Biased Low Dropout Regulator," IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1245-1254, 2017.
[30]M. G. Degrauwe, J. Rijmenants, E. A. Vittoz, and H. J. D. Man, "Adaptive biasing CMOS amplifiers," IEEE Journal of Solid-State Circuits, vol. 17, no. 3, pp. 522-528, 1982.
[31]R. Wang and R. Harjani, "Partial positive feedback for gain enhancement of low-power CMOS otas," Analog Integrated Circuits and Signal Processing, vol. 8, no. 1, pp. 21-35, 1995/07/01 1995.
[32]D. J. Allstot, "A precision variable-supply CMOS comparator," IEEE Journal of Solid-State Circuits, vol. 17, no. 6, pp. 1080-1087, 1982.
[33]T. Kulej and F. Khateb, "A Compact 0.3-V Class AB Bulk-Driven OTA," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 224-232, 2020.
[34]H. Wang et al., "A CMOS Low-Dropout Regulator with A Dynamic-Biased Gain Stage," Far East Journal of Electronics and Communications, vol. 7, pp. 67-81, 04/01 2012.
[35]H. Aminzadeh and M. A. Dashti, "Dual loop cascode-Miller compensation with damping factor control unit for three-stage amplifiers driving ultralarge load capacitors," International Journal of Circuit Theory and Applications, vol. 47, no. 1, pp. 1-18, 2019.
[36]C. Park, M. Onabajo, and J. Silva-Martinez, "External Capacitor-Less Low Drop-Out Regulator With 25 dB Superior Power Supply Rejection in the 0.4–4 MHz Range," IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 486-501, 2014.
[37]J. Pérez-Bailón, A. Márquez, B. Calvo, N. Medrano, and P. A. Martínez, "Fast-transient high-performance 0.18 μm CMOS LDO for battery-powered systems," Electronics Letters, vol. 53, no. 8, pp. 551-552, 2017.
[38]Y. Lim, J. Lee, S. Park, and J. Choi, "An extemal-capacitor-less low-dropout regulator with less than −36dB PSRR at all frequencies from 10kHz to 1GHz using an adaptive supply-ripple cancellation technique to the body-gate," in 2017 IEEE Custom Integrated Circuits Conference (CICC), 2017, pp. 1-4.
[39]G. S. Kim, J. K. Park, G. Ko, and D. Baek, "Capacitor-Less Low-Dropout (LDO) Regulator With 99.99% Current Efficiency Using Active Feedforward and Reverse Nested Miller Compensations," IEEE Access, vol. 7, pp. 98630-98638, 2019.
電子全文 電子全文(網際網路公開日期:20260119)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top