|
世界衛生組織【實況報導】。民107年1月16日,取自:https://www.who.int/zh/news-room/fact-sheets/detail/falls Bian, Z.-P., Hou, J., Chau, L.-P., & Magnenat-Thalmann, N. (2014). Fall detection based on body part tracking using a depth camera. IEEE journal of biomedical and health informatics, 19(2), 430-439. Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. Giles, C. L., Kuhn, G. M., & Williams, R. J. (1994). Dynamic recurrent neural networks: Theory and applications. IEEE Transactions on Neural Networks, 5(2), 153-156. Girshick, R. (2015). Fast r-cnn. Paper presented at the Proceedings of the IEEE international conference on computer vision. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Hsieh, J.-W., & Hsu, Y.-T. (2008). Boosted string representation and its application to video surveillance. Pattern Recognition, 41(10), 3078-3091. Hsieh, J.-W., Hsu, Y.-T., Liao, H.-Y. M., & Chen, C.-C. (2008). Video-based human movement analysis and its application to surveillance systems. IEEE Transactions on Multimedia, 10(3), 372-384. Huang, Z., Liu, Y., Fang, Y., & Horn, B. K. (2018). Video-based Fall Detection for Seniors with Human Pose Estimation. Paper presented at the 2018 4th International Conference on Universal Village (UV). Jansen, B., Temmermans, F., & Deklerck, R. (2007). 3D human pose recognition for home monitoring of elderly. Paper presented at the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE transactions on information technology in biomedicine, 10(1), 156-167. Lee, T., & Mihailidis, A. (2005). An intelligent emergency response system: preliminary development and testing of automated fall detection. Journal of telemedicine and telecare, 11(4), 194-198. Li, Q., Stankovic, J. A., Hanson, M. A., Barth, A. T., Lach, J., & Zhou, G. (2009). Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information. Paper presented at the BSN. Liu, J., Shahroudy, A., Xu, D., & Wang, G. (2016). Spatio-temporal lstm with trust gates for 3d human action recognition. Paper presented at the European Conference on Computer Vision. Liu, J., Wang, G., Hu, P., Duan, L.-Y., & Kot, A. C. (2017). Global context-aware attention LSTM networks for 3D action recognition. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Livingston, M. A., Sebastian, J., Ai, Z., & Decker, J. W. (2012). Performance measurements for the Microsoft Kinect skeleton. Paper presented at the 2012 IEEE Virtual Reality Workshops (VRW). Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Paper presented at the Advances in neural information processing systems. Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11), 2673-2681. Stone, E. E., & Skubic, M. (2015). Fall detection in homes of older adults using the Microsoft Kinect. IEEE J Biomed Health Inform, 19(1), 290-301. doi:10.1109/JBHI.2014.2312180 Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., & Baik, S. W. (2017). Action recognition in video sequences using deep bi-directional LSTM with CNN features. IEEE Access, 6, 1155-1166.
|