(3.238.7.202) 您好!臺灣時間:2021/03/04 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周立凱
研究生(外文):Chou, Li-Kai
論文名稱:交錯式升壓型功因修正器之主功率開關電壓應力研究
論文名稱(外文):Study of Voltage Stresses on Active Power Switches of Interleaved Boost-Type Power Factor Correctors
指導教授:華志強華志強引用關係
指導教授(外文):Hua, Chih-Chiang
口試委員:莫清賢陳建富陳財榮華志強
口試委員(外文):Moo, Chin-SienChen, Jiann-FuhChen, Tsair-RongHua, Chih-Chiang
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:交錯式功率因數修正器電壓應力輸入電流漣波
外文關鍵詞:Interleaved power factor correctorVoltage stressInput current ripple
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 內容大綱 3
第二章 功因修正原理 4
2.1 功率因數(PF)與總諧波失真(THD)之定義 4
2.2 PFC種類 6
2.2.1 主動式PFC 6
2.2.2 被動式PFC 7
2.3 PFC之架構 8
2.4 升壓型PFC轉換器原理 9
2.5 功率因數修正方法 11
2.5.1 連續導通模式 12
2.5.2 邊界導通模式 16
第三章 交錯式升壓型功因修正器 18
3.1 轉換器介紹 18
3.1.1 電路分析 19
3.1.2 時序分析 20
3.2 交錯式升壓型功因修正器模式分析 22
3.2.1 模式A : (D>0.5) 23
3.2.2 模式B:(D<0.5) 27
第四章 功率級元件與控制器參數設計 32
4.1 UCC28070控制器接腳與內部架構 32
4.2 UCC28070功能說明 35
4.3 本論文交錯式升壓型功因修正器設計 47
4.3.1 儲能電感設計 47
4.3.2 輸出電容設計 50
4.3.3 主動開關的選擇 50
4.3.4 比流器(CT)與取樣電阻(RS)設計 51
4.3.5 峰值電流限制設計 51
4.3.6 工作頻率與最大責任週期的選擇 51
4.3.7 輸出電壓回授設計 52
4.3.8 VINAC取樣設計 52
4.3.9 電壓迴路補償設計 52
4.3.10 電流迴路補償設計 54
4.3.11 軟啟動時間設計 55
4.3.12 抖頻減小EMI 設計 55
第五章 模擬與實驗結果 56
5.1 模擬結果與波形 56
5.2 實驗結果與波形 58
5.2.1 相關波形量測 59
5.2.2 效率比較 73
5.2.3 功率因數比較 74
5.3 實驗結果討論 76
第六章 結論與未來展望 77
6.1 結論 77
6.2 未來展望 77
參考文獻 78


[1]R. Kushwaha and B. Singh, "Power Factor Improvement in Modified Bridgeless Landsman Converter Fed EV Battery Charger," IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3325-3336, Apr. 2019.
[2]B. Singh, and R. Kushwaha, "EV Battery Charger with Non-Inverting Output Voltage-Based Bridgeless PFC Cuk converter," IET Power Electronics, vol. 12, no. 13, pp. 3359-3368, Nov. 2019.
[3]M. Truntič, T. Konjedic, M. Milanovič, P. Šlibar, and M. Rodič, "Control of Integrated Single-Phase PFC Charger for EVs," IET Power Electronics, vol. 11, no. 11, pp. 1804-1812, Sep. 2018.
[4]C. Shi, Y. Tang, and A. Khaligh, "A Single-Phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles," IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10899-10910, Dec. 2017.
[5]J. Lu, A. Mallik and, A. Khaligh, "Dynamic Strategy for Efficiency Estimation in a CCM-Operated Front-End PFC Converter for Electric Vehicle Onboard Charger," IEEE Transactions on Transportation Electrification, vol. 3, no. 3, pp. 545-553, Sep. 2017.
[6]C. Saber, D. Labrousse, B. Revol, and A. Gascher, Challenges Facing PFC of a Single-Phase On-Board Charger for Electric Vehicles Based on a Current Source Active Rectifier Input Stage," IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6192-6202, Sep. 2016.
[7]H. S. Nair and L. Narasamma, "Simple Digital Algorithm for Improved Performance in A Boost PFC Converter Operating in CCM," IET Power Electronics, vol. 12, no. 5, pp. 1102-1113, May 2019.
[8]J. Kim, H. Choi, and C. Won, "New Modulated Carrier Controlled PFC Boost Converter," IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 4772-4782, Jun. 2018.
[9]J. C. Dias and T. B. Lazzarin, "A Family of Voltage-Multiplier Unidirectional Single-Phase Hybrid Boost PFC Rectifiers," IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 232-241, Jan. 2018.
[10]J. Wang, H. Eto, and F. Kurokawa, "Optimal Zero-Voltage-Switching Method and Variable ON-Time Control for Predictive Boundary Conduction Mode Boost PFC Converter," IEEE Transactions on Industry Applications, vol. 56, no. 1, pp. 527-540, Jan. 2020.
[11]Hengshan Xu, Diyi Chen, Fei Xue, and Xutao Li, “Optimal Design Method of Interleaved Boost PFC for Improving Efficiency from Switching Frequency, Boost Inductor, and Output Voltage Two-Phase Interleaved Critical Mode PFC Boost Converter With Closed Loop Interleaving Strategy,” IEEE Transactions On Power Electronics, Vol. 34, No. 7, Jul. 2019.
[12]X. Ren, Z. Guo, Y. Wu, Z. Zhang, and Q. Chen, "Adaptive LUT-Based Variable On-Time Control for CRM Boost PFC Converters," IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 8123-8136, Sep. 2018.
[13]K. Yao, Y. Wang, J. Guo, and K. Chen, "Critical Conduction Mode Boost PFC Converter With Fixed Switching Frequency Control," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6845-6857, Aug. 2018.
[14]J. Kim, H. Choi, and C. Won, "New Modulated Carrier Controlled PFC Boost Converter," IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 4772-4782, Jun. 2018.
[15]Paulo Junior Silva Costa, Carlos Henrique Illa Font, and Telles H. S. Nair, and L. Narasamma, "Simple Digital Algorithm for Improved Performance in A Boost PFC Converter Operating in CCM," IET Power Electronics, vol. 12, no. 5, pp. 1102-1113, 1 5 2019.
[16]Hye-Jin Kim, Gab-Su Seo, Bo-Hyung Cho, and Hangseok Choi,” A Simple Average Current Control with on-Time Doubler for Multiphase CCM PFC Converter, IEEE Transactions on Power Electronics, vol. 30, no. 3, Mar. 2015.
[17]F. Yang, C. Li, Y. Cao, and K. Yao, "Two-Phase Interleaved Boost PFC Converter with Coupled Inductor Under Single-Phase Operation," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 169-184, Jan. 2020.
[18]C. Shen, L. Chen, and Y. Shen, "Interleaving-Based Converter System with Features of External Auxiliary Triggering and Universal Line Input for Driving Medical Laser Equipment," The Journal of Engineering, vol. 2019, no. 8, pp. 5379-5390, Aug. 2019.
[19]H. Kim, G. Seo, B. Cho, and H. Choi, "A Simple Average Current Control With On-Time Doubler for Multiphase CCM PFC Converter," IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1683-1693, Mar. 2015.
[20]H. Xu, D. Chen, F. Xue, and X. Li, "Optimal Design Method of Interleaved Boost PFC for Improving Efficiency from Switching Frequency, Boost Inductor, and Output Voltage," in IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6088-6107, July 2019.
[21]P. J. S. Costa, C. H. Illa Font, and T. B. Lazzarin, "Single-Phase Hybrid Switched-Capacitor Voltage-Doubler SEPIC PFC Rectifiers," IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 5118-5130, Jun. 2018.
[22]Y. Jang and M. M. Jovanovic, "Interleaved Boost Converter With Intrinsic Voltage- Doubler Characteristic for Universal-Line PFC Front End," IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1394-1401, Jul. 2007.
[23]A. K. Panda, P. R. Mohanty, N. Patnaik, and T. Penthia, "Closed-Loop-Controlled Cascaded Current-Controlled Dynamic Evolution Control-Based Voltage-Doubler PFC Converter for Improved Dynamic Performance," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1884-1891, Dec. 2018.
[24]謝奇諺,“無橋及雙相交錯主動功率因數修正器之研製” 國立台灣科技大學,碩士論文,2011年。
[25]許銘圳,“數位式單相主動式功因修正交/直流轉換器之研製” 國立雲林科技大學,碩士論文,2003年。
[26]蔡智偉,“1-kW 交錯式升壓型功率因數修正器研製” 國立台灣科技大學,碩士論文,2009年。
[27]黃金雄,“具柔切輔助電路之零電壓轉移無橋式功率因數修正整流器” 國立雲林科技大學,碩士論文2014年。
[28]Texas Instruments Inc., “UCC28070 Interleaving Continuous Conduction Mode PFC Controller,” Data Sheet, 2016.
[29]R. W. Erickson and D. Maksimovic, Fundamental of Power Electronics.New York: Springer-Verlag, 2001.
[30]Texas Instruments Inc., “UCCx732x Dual 4-A Peak High-Speed Low-Side Power-MOSFET Drivers,” Data Sheet, 2018.
[31]H. S. Athab, D. Dah-Chuan Lu, A. Yazdani, and B. Wu, "An Efficient Single-Switch Quasi-Active PFC Converter With Continuous Input Current and Low DC-Bus Voltage Stress," IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1735-1749, Apr. 2014.
[32]D. D. Lu, "High Voltage Stress in Single-Phase Single-Stage PFC Converters: Analysis and an Alternative Solution," IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 133-143, Jan. 2016.
[33]Z. Saadatizadeh, P. C. Heris, M. Sabahi, and E. Babaei, "A DC–DC Transformerless High Voltage Gain Converter with Low Voltage Stresses on Switches and Diodes," IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 10600-10609, Nov. 2019.
[34]C. Pan, C. Chuang, and C. Chu, "A Novel Transformer-less Adaptable Voltage Quadrupler DC Converter with Low Switch Voltage Stress," IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4787-4796, Sep. 2014.
[35]X. Hu, W. Liang, X. Liu, and Z. Yu, "A Hybrid Interleaved DC–DC Converter With a Wide Step-Up Regulation Range and Ultralow Voltage Stress," in IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5479-5489, Jul. 2020.
[36]C. Pan, C. Chuang, and C. Chu, "A Novel Transformerless Interleaved High Step-Down Conversion Ratio DC–DC Converter with Low Switch Voltage Stress," IEEE Transactions on Power Electronics, vol. 61, no. 10, pp. 5290-5299, Oct. 2014.

電子全文 電子全文(網際網路公開日期:20250820)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔