(34.237.124.210) 您好!臺灣時間:2021/03/02 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧敬騰
研究生(外文):DENG, JING TENG
論文名稱:雷射加工微凹坑於不鏽鋼基板對於磨潤性能研究
論文名稱(外文):Effect of Laser Textured Stainless Steel Substrates on Abrasive Performance
指導教授:張元震
指導教授(外文):ZHANG, YUAN ZHEN
口試委員:郭佳儱王可文
口試委員(外文):GUO, JIA-LONGWANG, KE-WUN
口試日期:2020-03-10
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:104
中文關鍵詞:雷射超高分子量聚乙烯微凹坑
外文關鍵詞:laserUHMWPEmicro-dimple
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
雷射加工為非化學、高精度、高能量密度且快速的加工法,可以快速製造微米級結構。表面微結構有助於在界面處形成潤滑液膜、容納磨屑。於微觀結構的凹面的出口處會造成壓力梯度,此壓力提高了兩種材料之間的潤滑膜的負載能力。
現行人工關節最常使用組合為CoCrMo合金/不銹鋼對超高分子量聚乙烯(UHMWPE),故本研究使用奈秒光纖雷射於304不鏽鋼平板上製備各面積覆蓋率及深徑比之凹坑,使用圓盤磨耗測試機搭配超高分子量聚乙烯圓棒進行磨耗測試,並使用往復磨耗測試機量測摩擦係數,測試完成後探討各凹坑參數試片對於表面黏屑、磨耗量、及摩擦係數,以了解表面微凹坑對於磨潤性能提升的能力。
最後結合使用大氣電漿(APPJ)表面處理之UHMWPE,探討能否再提升UHMWPE與不鏽鋼為磨擦配合的磨潤性能。
實驗結果表明,與未經雷射處理的不鏽鋼表面相比,具有微觀結構(面積覆蓋率= 0.1,徑深比= 3.75)的鋼表面具有最佳的摩擦學性能,包括64%的摩擦係數降低和80%磨耗量改善。 相較於未經處理的UHMWPE相比,APPJ表面處理後的UHMWPE的摩擦係數降低了16%,並且可以進一步改善具有微結構的不鏽鋼表面與經表面處理的UHMWPE之間的磨損。




關鍵字:雷射、超高分子力量聚乙烯、微凹坑

Laser processing is a non-chemical, high-precision, energy-intense, and fast processing method. Micron-scle structures can be quickly manufactured. The surface microstructures facilitate the formation a film of the lubricating fluid at the interface, accommodate wear debris. The concave surfaces of the microstructures also induce a pressure-gradient at the outlet of the concave surface, therefore enhance the loading capacity of the lubricating film between the two materials.
At present, the most common materials for artificial joints are CoCrMo alloy/ stainless steel with ultra-high molecular weight polyethylene (UHMWPE). In this study, a nanosecond fiber laser was used to fabricate micro dimples with various area coverages and aspect ratios on 304 stainless steel plates. The abrasion test was performed by a pin-on-disc wear tester while the friction coefficient was measured by a reciprocating abrasion tester. To quantify how the dimples improve the wear performance, the wear of UHMWPE, the adhesion of UHMWPE on steel, and the friction coefficient between the steel plate with microstructures and UHMWPE were measured.
Finally, the UHMWPE with atmospheric pressure plasma jet (APPJ) surface treatment was applied to further improve the abrasive performance between the UHMWPE and stainless steel.
Experimental results indicate that the steel surface with microstructures (area coverage = 0.1, aspect ratio = 3.75) provides the best tribological performances, including 64% of the friction coefficient reduction and 80% of the abrasion wear improvement, comparing with untreated steel surfaces. The friction coefficient of the UHMWPE after APPJ surface treatment was reduced by 16%, comparing with the untreated UHMWPE, and the wear between the steel with microstructures and the surface-treated UHMWPE can be further improved.



Keywords: laser, UHMWPE, micro-dimple

目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 金屬表面雷射微紋理降低磨耗文獻回顧 2
第二章 雷射加工及微結構提升磨潤原理介紹 37
2.1 雷射加工應用原理 37
2.1.1 雷射的產生機制 37
2.1.2 光纖雷射的工作原理 39
2.1.3 雷射模式與光斑直徑 40
2.1.4 奈秒雷射加工機制 43
2.1.5 雷射位移計原理 44
2.2 磨耗型態及微紋理提升液膜承載力原理 45
2.2.1 微紋理提升液膜承載力原理介紹 47
第三章 實驗設備、儀器及材料 48
3.1 實驗設備 48
3.1.1 光纖雷射 48
3.1.2 放電電漿電源供應器 50
3.1.3 放電切割機 51
3.1.4 金相研磨機 52
3.1.5 圓盤磨耗測試機 53
3.1.6 往復磨耗測試機 54
3.2 量測設備 55
3.2.1 工具顯微鏡(OLYMPUS-STM) 55
3.2.2 雷射位移計 56
3.3 實驗用耗材 57
3.3.1 不鏽鋼板 57
3.3.2 超高分子量聚乙烯 57
第四章 雷射加工微凹坑於不鏽鋼基板對於磨潤性能之影響 58
4.1 雷射加工不鏽鋼基板參數 58
4.2 雷射加工不鏽鋼基板後拋除加工融渣 59
4.3 拋除加工融渣後凹坑尺寸量測 61
4.4 磨耗測試參數設定與架設 62
4.5 磨耗測試前後不鏽鋼表面觀察及超高分子量聚乙烯磨耗量量測 63
4.6 摩擦係數量測參數設定及架設 72
4.7 各參數試片摩擦係數量測 74
第五章 結果與討論 79
5.1 凹坑面積覆蓋率對於磨潤性能之影響 79
5.2 各凹坑深徑比對於摩潤性能之影響 81
5.3 超高分子量聚乙烯經電漿處理對於磨潤性能影響 83
第六章 結論與未來展望 86
6.1 表面微凹坑參數對於磨潤性能影響結論 86
6.2 電漿處理對於磨潤性能影響 86
6.3 磨耗測試 87
6.4 雷射曲面加工 88
6.5 雷射加工微凹坑 88
6.6 未來應用 88
參考文獻 89

[1]X. Wang, K. Kato, K. Adachi, and K. Aizawa, "Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water," Tribology International, vol. 36, no. 3, pp. 189-197, 2003.
[2]M. Wakuda, Y. Yamauchi, S. Kanzaki, and Y. Yasuda, "Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact," Wear, vol. 254, no. 3-4, pp. 356-363, 2003.
[3]Y. Zhou, H. Zhu, W. Tang, C. Ma, and W. Zhang, "Development of the theoretical model for the optimal design of surface texturing on cylinder liner," Tribology International, vol. 52, pp. 1-6, 2012.
[4]F. Dai, J. Geng, W. Tan, X. Ren, J. Lu, and S. Huang, "Friction and wear on laser textured Ti6Al4V surface subjected to laser shock peening with contacting foil," Optics & Laser Technology, vol. 103, pp. 142-150, 2018.
[5]H. Sawano, S. i. Warisawa, and S. Ishihara, "Study on long life of artificial joints by investigating optimal sliding surface geometry for improvement in wear resistance," Precision engineering, vol. 33, no. 4, pp. 492-498, 2009.
[6]M. Cho and H.-J. Choi, "Optimization of surface texturing for contact between steel and ultrahigh molecular weight polyethylene under boundary lubrication," Tribology Letters, vol. 56, no. 3, pp. 409-422, 2014.
[7]D. He, S. Zheng, J. Pu, G. Zhang, and L. Hu, "Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film," Tribology international, vol. 82, pp. 20-27, 2015.
[8]T. Roy, D. Choudhury, S. Ghosh, A. B. Mamat, and B. Pingguan-Murphy, "Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty," Ceramics International, vol. 41, no. 1, pp. 681-690, 2015.
[9]K. Li, Z. Yao, Y. Hu, and W. Gu, "Friction and wear performance of laser peen textured surface under starved lubrication," Tribology international, vol. 77, pp. 97-105, 2014.
[10]H. Ito, K. Kaneda, T. Yuhta, I. Nishimura, K. Yasuda, and T. Matsuno, "Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints," The Journal of arthroplasty, vol. 15, no. 3, pp. 332-338, 2000.
[11]L. Qin, P. Lin, Y. Zhang, G. Dong, and Q. Zeng, "Influence of surface wettability on the tribological properties of laser textured Co–Cr–Mo alloy in aqueous bovine serum albumin solution," Applied Surface Science, vol. 268, pp. 79-86, 2013.
[12]A. Chyr, M. Qiu, J. W. Speltz, R. L. Jacobsen, A. P. Sanders, and B. Raeymaekers, "A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints," Wear, vol. 315, no. 1-2, pp. 51-57, 2014.
[13]Y. Zhang, X. Zhang, and G. Matsoukas, "Numerical study of surface texturing for improving tribological properties of ultra-high molecular weight polyethylene," Biosurface and Biotribology, vol. 1, no. 4, pp. 270-277, 2015.
[14]X. Wei et al., "Surface modification of Co–Cr–Mo implant alloy by laser interference lithography," Tribology International, vol. 97, pp. 212-217, 2016.
[15]P. Pou et al., "Laser surface texturing of Titanium for bioengineering applications," Procedia Manufacturing, vol. 13, pp. 694-701, 2017.
[16]H. Lu, S. Ren, J. Guo, Y. Li, J. Li, and G. Dong, "Laser textured Co-Cr-Mo alloy stored chitosan/poly (ethylene glycol) composite applied on artificial joints lubrication," Materials Science and Engineering: C, vol. 78, pp. 239-245, 2017.
[17]A. Borjali, J. Langhorn, K. Monson, and B. Raeymaekers, "Using a patterned microtexture to reduce polyethylene wear in metal-on-polyethylene prosthetic bearing couples," Wear, vol. 392, pp. 77-83, 2017.
[18]D. Choudhury et al., "The impact of surface and geometry on coefficient of friction of artificial hip joints," Journal of the mechanical behavior of biomedical materials, vol. 72, pp. 192-199, 2017.
[19]L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, "Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing," International Journal of Refractory Metals and Hard Materials, vol. 72, pp. 211-222, 2018.
[20]D. Choudhury, D. Rebenda, S. Sasaki, P. Hekrle, M. Vrbka, and M. Zou, "Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects," Journal of the mechanical behavior of biomedical materials, vol. 81, pp. 120-129, 2018.
[21]S. Ghosh and S. Abanteriba, "Status of surface modification techniques for artificial hip implants," Science and Technology of advanced MaTerialS, vol. 17, no. 1, pp. 715-735, 2016.
[22]A. Borjali, K. Monson, and B. Raeymaekers, "Friction between a polyethylene pin and a microtextured CoCrMo disc, and its correlation to polyethylene wear, as a function of sliding velocity and contact pressure, in the context of metal-on-polyethylene prosthetic hip implants," Tribology international, vol. 127, pp. 568-574, 2018.
[23]J. Langhorn, A. Borjali, E. Hippensteel, W. Nelson, and B. Raeymaekers, "Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: multi-directional wear and corrosion measurements," Tribology international, vol. 124, pp. 178-183, 2018.
[24]T. Stark, S. Alamri, A. I. Aguilar-Morales, T. Kiedrowski, and A. F. Lasagni, "Positive effect of laser structured surfaces on tribological performance," Journal of Laser Micro Nanoengineering, vol. 14, no. 1, pp. 13-18, 2019.
[25]"http://www.phy.cuhk.edu.hk/phyworld/articles/laser/laser.html".
[26]"http://cc.cust.edu.tw/~lan/Laser/Ch3_laser_base.pdf".
[27]"https://www.wikiwand.com/en/Transverse_mode".
[28]"http://cs.brown.edu/courses/cs143/2011/results/proj1/bcheung/Filtering.html".
[29]"http://www.laser10086.com/upload/file/19ecec5864a38011641f3afc6d83bc54.pdf".
[30]A. K. Dubey and V. Yadava, "Laser beam machining—a review," International Journal of Machine Tools and Manufacture, vol. 48, no. 6, pp. 609-628, 2008.
[31]https://www.keyence.com.tw/.
[32]M. P. Boyce, Gas turbine engineering handbook. Elsevier, 2011.
[33]https://www.excetek.com/webls-zh-tw/V400G.html.
[34]L. Yang, Y. Ding, B. Cheng, J. He, G. Wang, and Y. Wang, "Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15," Applied Surface Science, vol. 434, pp. 831-842, 2018.
[35]A. Oliveira, F. C. Trigo, R. Queiroz, and R. Carvalho, "Development of a protocol for the performance evaluation of wear machines used in tests of joint prostheses," Mechanism and Machine Theory, vol. 61, pp. 59-67, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔