(18.210.12.229) 您好!臺灣時間:2021/03/05 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張晉瑋
研究生(外文):CHANG, CHIN-WEI
論文名稱:應用衛星定位技術結合虛擬參考站進行結構振態頻率識別之研究
論文名稱(外文):Study of the Satellite-based Positioning Technology Using Virtual Reference Stations in Identifying Modal Frequencies of Structures
指導教授:陳建州陳建州引用關係
指導教授(外文):CHEN, CHIEN-CHOU
口試委員:吳文華王仲宇
口試委員(外文):WU, WEN-HUAWANG,CHUNG-YUE
口試日期:2020-03-11
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:136
中文關鍵詞:衛星定位技術VRS定位技術振態頻率衛星定位雜訊
外文關鍵詞:satellite positioning technologyvirtual reference stationmodal frequencysatellite positioning noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以人行吊橋為對象,探討應用虛擬參考站衛星定位技術進行橋體振態頻率識別的可行性與適用性,並同時使用實體參考站作為對照,虛擬參考站來自於內政部國土測繪中心所建置的全國性e-GNSS衛星定位基準站,衛星定位資料僅接收美國GPS的L1單頻訊號,採用載波相位差分計算,相關動態量測項目依序包含振動台振動量測與兩座人行吊橋的現地實測。振動台試驗為量測振動台產生的單一方向振動,試驗組合為不同頻率與振幅組成,振動頻率範圍涵蓋0.1Hz至4Hz多種頻率,進行較低的測試頻率重點在於探討虛擬參考站對於振動頻率識別的可行性,並與實體參考站進行比較,分析基於兩種不同參考站之差異性;較高頻的振動條件則在探討衛星定位技術是否可識別較高頻振動頻率,交叉分析進而評估虛擬參考站在高頻的適用性。本研究於振動台試驗過程中將利用本團隊所開發的影像技術紀錄接收器的振動軌跡,以同時提供識別頻率的比對資料。試驗分析結果顯示,利用虛擬參考站或實體參考站均可準確識別出振動台輸出振動頻率,研究亦發現,若取樣頻率不高,頻率識別可能受取樣誤差的影響。針對碧潭吊橋及石牛溪吊橋進行實橋量測,為提供比對資料,此部分試驗以速度計量測吊橋之振動速度資料,探討虛擬參考站對於頻率識別的可行性,同樣與實體參考站的頻率識別結果進行差異比較,另外,接收器取樣頻率設為10Hz及1Hz兩種,期望藉由交叉分析評估未來利用虛擬參考站在實橋量測的可能性。試驗結果顯示取樣頻率1Hz時僅部分識別結果與速度計結果相近,提升取樣頻率較有利於實橋的振態頻率識別。振動台試驗及實橋量測結果可進一步分析衛星定位雜訊主要分布在低頻(低於0.4Hz),當識別頻率太小,則容易受雜訊遮蔽。
The objective of this research is to investigate the feasibility and applicability of the satellite-based positioning technology with virtual reference stations in contrast to real reference stations for the applications to identify the modal frequencies of pedestrian suspension bridges. The virtual reference station is created from the e-GNSS satellite positioning reference stations established by National Land Surveying and Mapping Center in Taiwan. Simply GPS L1 signal is adopted in this study for the positioning computation based on the differential of carrier phase. The dynamic measurements for the harmonic vibration generated by a shaking table and the ambient vibration of two pedestrian suspension bridges are both examined. In the shaking table test, different unidirectional vibration cases with the excitation frequency ranged from 0.1Hz to 4Hz and varied amplitudes are measured. The cases with lower excitation frequencies are aimed to inspect the feasibility of frequency identification with the virtual reference station in contrast to the corresponding instance with the real reference station. On the other hand, the cases with higher excitation frequencies are conducted to access the possibility of extending the frequency identification application to a wider range. The digital photogrammetry technology developed by this research group is also applied to provide the comparison base in the shaking table test. The results demonstrate that the vibration frequency can be accurately identified by both with the virtual reference station and with the real reference station. Furthermore, the identification accuracy may be affected if the sampling frequency is not much higher than the vibration frequency. As for the measurements on Bitan Suspension Bridge and Shi Niu Xi Suspension Bridge, in order to provide the comparison data, high-resolution velocimeters are employed to simultaneously record the velocity time histories. In different cases of the real bridge test, two sampling frequencies of 10Hz and 1Hz are set for the receiver to evaluate the possibility of applying the virtual reference station on the real bridge measurement. The test results reveal that the modal frequency identification based on the measurements from the satellite positioning technology with a sampling frequency of 1Hz is apparently not comparable to that based on the corresponding velocimeter measurements. Moreover, it is found that increase of sampling frequency can improve the bridge frequency identification with the satellite positioning technology. Finally, the result of the shaking table test and the real bridge test both show that the satellite positioning noise is mainly concentrated in the low frequency range (less than 0.4Hz) to deteriorate the modal frequency identification of structure falling in this range.
摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 2
1.3 文獻回顧 2
1.4 本文內容與架構 4
第二章 GPS衛星定位系統介紹 6
2.1 GPS衛星系統架構 6
2.2 衛星定位原理 7
2.3 定位誤差來源 10
2.4 差分定位解算 11
2.5 衛星之DOP值 12
第三章 VRS虛擬參考站定位技術介紹 21
3.1 概述 21
3.2 國土測繪局虛擬基準站系統簡介 21
3.3 VBS基本定位原理 22
3.4 VBS解算流程與步驟 22
第四章 衛星定位接收系統與解算軟體說明 28
4.1 訊號接收系統說明 28
4.2 儀器配置規劃與參數設定 29
4.3 RTKLIB解算軟體說明 30
4.4 軟體計算參數設定 31
第五章 低頻簡諧振動之衛星定位量測驗證 37
5.1 振動台試驗規劃與設置 37
5.2 量測作業說明 38
5.3 影像量測資料分析步驟 39
5.4 衛星定位訊號分析步驟 39
5.5 振動頻率識別與位移比較差異分析 41
第六章 高頻簡諧振動之衛星定位量測驗證 67
6.1 試驗規劃與分析說明 67
6.2 振動頻率識別分析 67
6.3 衛星定位解算雜訊分析 68
6.4 衛星訊號取樣頻率對振動頻率識別之影響分析 70
6.5 基於虛擬參考站之高頻振動頻率識別限制與可行性研判 72
第七章 實橋振態頻率量測 84
7.1 碧潭吊橋與石牛溪吊橋簡介 84
7.2 試驗規劃與儀器配置 84
7.3 量測作業說明 85
7.4 隨機子空間識別法 86
7.5 振態頻率識別分析 88
7.6 頻率識別結果之影響分析 91
第八章 結論與建議 118
8.1 結論 118
8.2 建議 119
參考文獻 120


[1]J. W. Lovse, W. F. Teskey, G. Lachapelle, and M. E. Cannon (1995), “Dynamic Deformation Monitoring of Tall Structure Using GPS Technology”, Journal of Surveying Engineering, Vol. 121, pp, 35-40.
[2]N. OShen, L. Chen, J. Liu, L. Wang, T. Tao, D. Wu and R. Chen (2019), “A review of Global Navigation Satellite System (GNSS)-based dynamic monitoring technologies for structural health monitoring”, Remote Sensing, Vol. 11, No. 9, Article number 1001.
[3]J. V. M. de Oliveira, and A. P. C. Larocca (2019), “Vibration monitoring of a small concrete bridgeusing wavelet transforms on GPS data”, Journal of Civil Structural Health Monitoring, Vol. 9, No. 3, pp. 397-409.
[4]X. X. Cheng, and Y. J. Ge (2019), “An Innovative Structural Health Monitoring System for LargeTransmission Towers Based on GPS”, International Journal of Structural Stability and Dynamics, Vol. 19, No. 4.
[5]G. Wang, Y. Ding, D. Feng and J. Ye (2018), “Evaluation of the Wind-Resistant Performance of Long-Span Cable-Stayed Bridge Using the Monitoring Correlation between the Static Cross Wind and Its Displacement Response”, Shock and Vibration, Vol. 2018, Article ID 5369281, 10 pages.
[6]P. Górski (2017), “Dynamic characteristic of tall industrial chimney estimated from GPS measurement and frequency domain decomposition”, Engineering Structures, Vol. 148, pp. 277-292.
[7]G. E. Vazquez B., J. R. Gaxiola-Camacho, R. Bennett, G. M. Guzman-Acevedo and I. Gaxiola-Camacho (2017), “Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology”, Measurement, Vol. 110, pp. 146-153.
[8]M. G Kogan, W. Y. Kim, Y. Bock, and A. W. Smyth (2008), “Load Response on a Large Suspension Bridge during the NYC Marathon Revealed by GPS and Accelerometers”, Seismo. Res. Lett. , 79(1), 12-19.
[9]M. Meo, , G Zumpano, Xiaolin Meng, Emily Cosser, Gethin Roberts, and Alan Dodson (2011),“Measurements of dynamic properties of a medium span suspension bridge by using the wavelet transforms”, Mechanical Systems and Signal Processing, Vol. 20, 1112-1133.
[10]D. T. Hristopulos, Mertikas S. P., I. Arhontakis, and J. M. W. Brownjohn (2007), “Using GPS for monitoring tall-building response to wind loading: filtering of abrupt changes and low-frequency noise”, variography and spectral analysis of displacements, GPS Solut., 11(2), 85-95.
[11]程朋根、史文中、劉學斌、王承瑞 (2004),“基於RTK GPS 計數的大型橋梁動態監測與信息管理”,橋梁建設第二期,5-8。
[12]C. Watson, T. Watson, and R. Coleman (2007), “Structural Monitoring of Cable-Stayed Bridge: Analysis of GPS versus Modeled Deflections”, Journal of Surveying Engineering, 133, 23-28, 2007.
[13]R. E. Schaal and A. P. Larocca (2009), “Measuring Dynamic Oscillations of a Small Span Cable-Stayed Footbridge: Case Study Using L1 GPS receivers”, Journal of Surveying Engineering, 135, 33-37.
[14]J. Yu, X. Meng, X. Shao, B. Yan, and L. Yang (2014), “Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing”, Engineering Structures, 81, 432-443.
[15]P. A. Psimoulis, Stella Pytharouli, Panayiotis Triantafyllidis and Stathis Stiros (2006), “Experimental monitoring of oscillations of majorflexible structures using GPS and RTK”, 3rd IAG / 12th FIG Symposium, Baden, May 22-24.
[16]A. Nickitopoulou, K. Protopsalti, S. Stiros (2006), “Monitoring dynamic and quasi-static deformations of large flexible engineering structures with GPS: Accuracy, limitations and promises”, Engineering Structures, Vol. 28, 1471–1482.
[17]P. A. Psimoulis, Stella Pytharouli, Panayiotis Triantafyllidis and Stathis Stiros (2008), “Potential of Global Positioning System (GPS) to measure frequencies of oscillations of engineering structures”, Journal of Sound and Vibration, Vol. 318, 606-623.
[18]F. Moschas, and S. C. Stiros (2011), “Measurement of the dynamic displacements and the model frequencies of a short-span pedestrian bridge using GPS and an accelerometer”, Engineering Structures 33, PP10-17.
[19]Y. Niu, and C. Xiong (2018), “Analysis of the dynamic characteristics of a suspension bridge based on RTK-GNSS measurement combining EEMD and a wavelet packet technique”, Measurement Science and Technology, Vol. 9, No. 8, Article number 085103.
[20]Ting-Hua Yi, Hong-Nan Li, Ming Gu (2013), “Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge”, Measurement, Vol. 46, 420–432.
[21]M. Figurski, N. Galuszkiewicz, and M. Wrona (2007), “A Bridge Deflection Monitoring with GPS”, Artificial Satellites, Vol. 42, No. 4 229-238.
[22]C. Watson, T. Watson, and R. Coleman (2007), “Structural Monitoring of Cable-Stayed Bridge: Analysis of GPS versus Modeled Deflections”, Journal of Surveying Engineering, 133, 23-28, 2007.
[23]R. E. Schaal and A. P. Larocca (2009), “Measuring Dynamic Oscillations of a Small Span Cable-Stayed Footbridge: Case Study Using L1 GPS receivers”, Journal of Surveying Engineering, 135, 33-37.
[24]M. Figurski, N. Galuszkiewicz, and M. Wrona (2007), “A Bridge Deflection Monitoring with GPS”, Artificial Satellites, Vol. 42, No. 4 229-238.
[25]F. Moschasa, and S. Stiros (2012), “Noise characteristics of short-duration, high frequency GPS-records”, Adv. Math.Comput. Tools Metrol. Test. Vol. 9, pp. 1488–1506.
[26]F. Moschas, and S. Stiros (2013), “Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments”, Measurement, Vol. 46, pp. 1488–1506.
[27]C. Rizos (2002), “Network RTK Research and Implementation – A Geodetic Perspective”, J. Global Positioning Systems, 1(2), 144-150.
[28]C. L. Tseng, J. Y. Yu, M. Yang, C. F. Lo, and H. L. Lin (2004), “台灣e-GPS系統建置理論與實務”, Cadastral Survey, 23(2), 13-26.
[29]M. S. Wang, C. C. Liu, J. L. Liu, and F. D. Hsiao (2006),“e-GPS衛星基準網之VBS-RTK即時動態定位系統測量成果分析”, Cadastral Survey, 25(2), 1-19.
[30]S. P. Kao, C. C. Liang, and H. C. Lee (2006), “VRS-RTK應用於圖根點測設成果分析-以竹山鎮為例”, Cadastral Survey, 25(3), 1-16.
[31]G. C Tsuei, and M. H. Wang (2006), “網路RTK於地籍測量應用之研究-以花蓮地區為例”, Cadastral Survey, 25(3), 17-34.
[32]J. T. Liu, L. S. Hwang, and C. Y. Ho (2011), “e-GPS系統應用於地籍圖重測加密控制測量之研究”, Cadastral Survey, 30(2), 16-31.
[33]K. Gümüş, and M. O. Selbesoğlu (2019), “Evaluation of NRTK GNSS positioning methods for displacement detection by a newly designed displacement monitoring system”, Journal of the International Measurement Confederation, Vol. 142, pp. 131-137.
[34]J. Yu, B. Yan, X. Meng, X. Shao, and H. Ye (2016) “Measurement of bridge dynamic responses using network-based real-time kinematic GNSS technique”, J. Surv. Eng., Vol. 142, 04015013.
[35]A. Cina, and M. Piras (2015), “Performance of low-cost GNSS receiver for landslides monitoring: test and results”, Geomatics, Natural Hazards and Risk, Vol. 6, No. 5-7, pp. 497-514.
[36]J. Yu, B. Yan, X. Meng, X. Shao, B. Yan, and L. Yang (2014) “Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing”, Eng. Struct., Vol. 81, pp. 432–443.
[37]D. Huang, L. Zhou, J. Liu, and Y. Xiong (2007), “Internet based VRS/RTK positioning algorithm and experiment”, Geomatics and Information Science of Wuhan University, Vol. 32, No. 3, pp. 220-228.
[38]T. Takasu (2013), TKLIB ver. 2.4.2 manual.。
[39]內政部國土測繪中心(2006),“e-GPS衛星基準站即時動態定位系統VBS-RTK定位測試成果報告”。
[40]林慶輝(2017),“應用衛星定位技術進行土木結構變位量測的適用性與誤差特性探討”,碩士論文,國立雲林科技大學營建工程系。
[41]陳建州、吳文華、曾宏正、賴國龍、謝昱德 (2010),“數位攝影量測技術應用於斜張鋼纜振態頻率識別之研究”,中國土木水利工程學刊,Vol.38, No.3,pp.411-421。
[42]于思婷(2017),“以隨機子空間識別法進行斜張鋼纜之阻尼比分析與可能因素探討”,碩士論文,國立雲林科技大學營建工程系。
[43]邱柏軒(2016),“根據微振量測進行人行吊橋之振態參數識別、動力特性探討及穩定行評估”,碩士論文,國立雲林科技大學營建工程系。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔