跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳瑋縉
研究生(外文):CHEN,WEI-JIN
論文名稱:環境及運作因素對大跨徑斜張橋體與鋼纜不同振態頻率的影響
論文名稱(外文):Environmental and Operational Effects on the Girder and Cable Frequencies of a Long-Span Cable-Stayed Bridge
指導教授:吳文華
指導教授(外文):WU, WEN-HUA
口試委員:陳建州王仲宇
口試委員(外文):CHEN, CHIEN-CHOUWANG, CHUNG-YUE
口試日期:2020-03-11
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:152
中文關鍵詞:斜張橋溫度交通活載長期影響橋面鋼纜隨機子空間識別法振態頻率有限元素模型支承束制鬆解
外文關鍵詞:cable-stayed bridgetemperaturetraffic loadinglong-term effectgirdercablestochastic subspace identificationmodal frequencyfinite element modelrelaxation of boundary constraints
相關次數:
  • 被引用被引用:1
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了釐清大跨徑斜張橋體與鋼纜不同振態頻率在受溫度及交通活載的長期影響機制,本論文選定香港汀九斜張橋作為研究對象,並整理與探討該座橋在連續一年的橋面及鋼纜之微振量測資料。接著利用隨機子空間識別法經改良式穩定圖及三階段篩分技巧,準確的識別出隨時間變化的各振態參數。最後再對環境及運作因素與各振態頻率進行相關性分析,並進一步的建立其有限元素模型以進行深入探討及驗證。
根據本論文的分析結果,可以發現大跨徑斜張橋之橋面第一與第二垂直向撓曲振態頻率變化與代表交通活載指標的平均振幅在各月及整年均呈現強負相關性,且與鋼栓及空氣溫度變化均較無關係性。橫向穩定索的振態頻率與鋼栓及空氣溫度變化在各月均呈現強負相關性,但在整年的溫度影響下,橋塔、鋼纜及橫梁會同時受到溫度變化的影響,使得對振態頻率的影響相互抵消,而與交通活載則較無相關性。此外,縱向穩定索因直接連接橋塔與橋面,所以其振態頻率會同時受到溫度及橋面交通量的影響,導致與各項環境及運作因素均無明顯相關性。最後透過有限元素模型的驗證,結果顯示橋面第一及第二垂直向撓曲振態頻率主要是受到支承束制鬆解效應的影響導致的頻率變化,此外,鋼纜與縱向穩定索也會影響橋面第一及第二垂直向撓曲振態的變化。
For clarifying the mechanisms of temperature and traffic loading effects on the girder and cable frequencies of various long-span cable-stayed bridge, Hong Kong Ting Kau Bridge is investigated in this thesis. Ambient vibration measurement data of the girder and cable of this bridge lasting for one year are arranged and discussed. Stochastic subspace identification together with the alternative stabilization diagram and the three-stage sifting process is then applied to accurately identify the corresponding modal parameters varying with time. Finally, the correlation analysis is performed to examine the dominant environmental and operational effects for the variation of modal frequencies. Finite element model is also established for further exploration and verification.
Based on the analysis in this thesis, it can be found that the frequency of the girder of the of long-span cable-stayed bridge first and second vertically bending mode are strongly correlated with the traffic loading represented by the average vibration amplitude in a negative manner in each month and year. On the other hand, the corresponding correlation with the steel bolt and air temperature is relatively weak. The modal frequencies of the transverse stable cable are strongly correlated with the steel bolt and air temperature in each month. However, the tower, cable and girder are affected by temperature at the same time. So that the effect on the modal frequencies is canceled out each other. On the other hand, the corresponding correlation with the average vibration amplitude is relatively weak. The longitudinal stable cable is connected to the tower and girder, so modal frequencies is affected by temperature and traffic at the same time, resulting the corresponding correlation with various environmental and operational effects is relatively weak. According to the finite element model, it is clearly shown that the relaxation of boundary constraints is the main factor to cause the variation of frequency for the first and second vertically bending mode of the girder. By the way, the cable and longitudinal stable cable are also factor to cause the variation of frequency for the first and second vertically bending mode of the girder.
摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與目的 1
1.2 文獻回顧 2
1.3 研究方法與內容 3
1.4 論文架構 4
第二章 香港汀九橋介紹與資料整理 5
2.1 橋梁介紹 5
2.2 量測規劃與儀器配置 5
2.3 量測數據之整理量測規劃與儀器配置 6
第三章 隨機子空間識別法 8
3.1 協方差型隨機子空間識別法 8
3.2 傳統穩定圖與改良式穩定圖 11
3.3 階層式篩分之應用 12
第四章 橋面振態頻率與環境及運作因素之相關性分析 16
4.1 橋面振態頻率之SSI分析 16
4.2 橋面振態頻率之儀器選用 17
4.3 橋面振態頻率與環境及運作因素之相關性分析 18
第五章 穩定索振態頻率與環境及運作因素之相關性分析 20
5.1 穩定索振態頻率之SSI分析 20
5.2 穩定索振態頻率與環境及運作因素之相關性分析 21
5.3 橫向穩定索振態頻率與有效溫度之相關性分析 24
第六章 有限元素模型分析 26
6.1 有限元素模型之建立與調整 26
6.2 有限元素模型之驗證 28
第七章 結論與建議 30
7.1 結論 30
7.2 建議 31
參考文獻 32
附錄 39
[1]L. F. Ramos, L. Marques, P. B. Lourenco, G. De Roeck, A. Campos-Costa, and J. Roque, 2010, Monitoring Historical Masonry Structures with Operational Modal Analysis:Two Cases Studies, Mechanical Systems and Signal Processing, Vol. 24, No. 5, pp. 1291-1305.
[2]C. Gentile and A. Saisi, 2013, Operational Modal Testing of Historic Structures at Different Levels of Excitation, Construction and Building Materials, Vol. 48, pp.1273-1285.
[3]Saisi, C. Gentile, and M. Guidobaldi, 2015, Post-earthquake Continuous Dynamic Monitoring of the Gabbia Tower in Mantua, Italy, Construction and Building Materials, Vol. 81, pp, 101-112.
[4]Saisi, M. Guidabaldi, and C. Gentile, 2016, On Site Investigation and Health Monitoring of a Historic Tower in Mantua, Italy, Applied Sciences, Vol. 6, No. 6, pp.173.
[5]F. Ubertini, G. Comanducci, N. Cavalagli, A. L. Pisello, A. L. Materazzi, and F. Cotana, 2017, Environmental Effects on Natural Frequencies of the San Pietro Bell Tower in Perugia, Italy, and Their Removal for Structural Performance Assessment, Mechanical Systems and Signal Processing, Vol. 82, pp. 307-322.
[6]L. Faravelli, F. Ubertini, and C. Fuggini, 2011, System Identification of a Super High-rise Building via a Stochastic Subspace Approach, Smart Structures and Systems, Vol. 7, No. 2, pp. 133-152.
[7]R. D. Nayeri, S. F. Masri, R. G. Ghanem, and R. L. Nigbor, 2008, A Novel Approach for the Structural Identification and Monitoring of a Fullscale 17-story Building Based on Ambient Vibration Measurements, Smars Materials and Structures, Vol. 17, No. 2, pp. 1-19.
[8]K. V. Yuen and S. C. Kuok, 2010, Ambient Interference in Long-term Monitoring of Buildings, Engineering Structures, Vol. 32, No. 8, pp. 2379-2386.
[9]E. P. Carden and J. M. W. Brownjohn, 2008, Fuzzy Clustering of Stability Diagram for Vibration-based Structural Health Monitoring, Computer-Aided Civil Infrastructure Engineering, Vol. 23, No. 5, pp. 360-372.
[10]X. Ye, Q. Yan, W. Wang, and X. Yu, 2012, Modal identification of Canton Tower under uncertain environmental conditions, Smart Structures and Systems, Vol. 10, Issue4_5, pp. 353-373.
[11]Deyi Zhang, Yuequan Bao, Hui Li, and Jinping Ou, 2012, Investigation of Temperature Effects on Modal Parameters of the China National Aquatics Center, Advances in Structural Engineering, Vol. 15, pp. 1139-1154
[12]Belleri, B. Moaveni, and J. I. Restrepo, 2014, Damage Assessment Through Structural Identification of a Three-story Large-scale Precast Concrete Structure, Earthquake Engineering and Structural Dynamics, Vol. 43, No. 1, pp. 61-76.
[13]D. Foti, V. Gattulli, and F. Potenza, 2014, Output-only Identification and Modal Updating by Dynamic Testing in Unfavorable Conditions of a Seismically Damaged Building, Computer-Aided Civil and Infrastructure Engineering, Vol. 29, No. 9, pp. 659-675.
[14]B. Faheem and O. Piotr, 2014, Seismic Response Trends Evaluation and Finite Element Model Calibration of an Instrumented RC Building Considering Soil-structure Interaction and Non-structural Components, Engineering Structures, Vol. 65, pp. 111-123.
[15]S. K. Panigrahi, S. Chakraverty, and S. K. Bhattacharyya, 2015, Damage Detection of Multi-storyed Shear Structure Using Sparse and Noisy Modal Data, Smart Structures and Systems, Vol. 15, No. 5, pp. 1215-1232.
[16]Xiaobin Bai, Na Yang, and Q. S. Yang, 2018, Temperature effect on the Structural strains of an ancient Tibetan building based on long-term monitoring data, Earthquake Engineering and Engineering Vibration, Vol. 17, pp. 641-657.
[17]Q. W. Zhang, L. C. Fan, and W. C. Yuaan, 2002, Traffic-induced Variability in Dynamic Properties of Cable-stayed Bridge, Earthquake Engineering and Structural Dynamics, Vol. 31, No. 11, pp.2015-2021.
[18]Y. Q. Ni, X. G. Hua, K. Q. Fan, and J. M. Ko, 2005, Correlating modal Properties with Temperature Using Long-term monitoring Data and Support Vector machine Technique, Engineering Structures, Vol. 27, No. 12, pp. 1762-1773.
[19]J. H. G. Macdonald and W. E. Daniell, 2005, Variation of Modal Parmeters of a Cable-stayed Bridge Identified from Ambient Vibration Measurements and FE Modelling, Engineering Structures, Vol. 27, No. 13, pp. 1916-1930.
[20]X. G. Hua, Y. Q. Ni, J. M. Ko, and K. Y. Wong, 2007, Modelling of Temperature-frequency Correlation Using Combined Principal Component Analysis and Support Vector Regression Techniques, Journal of Computing in Civil Engineering, Vol. 21, No. 2, pp. 122-135.
[21]Y. Q. Ni, J. M. Ko, X. G. Hua and H. F. Zhou, 2007, Variability of Measured Modal Frequencies of a Cable-stayed Bridge Under Different Wind conditions, Smart Structures and Systems, Vol. 3, No 3, pp. 341-356.
[22]李愛群、丁幼亮、費慶國、繆長青,2007年,潤揚大橋斜張橋模態頻率識別的環境變異性,東南大學學報(自然科學版),第2期,第245-250頁。
[23]閔志準,孫利民,淡丹輝,2009年,影響斜拉橋模態參數變化的環境因素分析,振動與沖刷,第28卷,第10期,第99-105頁。
[24]C. H. Chen, Y. Y. Lin, and S. C. Yang, 2010, Variability of Dynamic Characteristics of a Cable-stayed Bridge Subject to Traffic-induced Vibrations, Journal of Chung Cheng Institute of Technology, Vol. 39, No. 2, pp. 47-56.
[25]孫利民、周毅、謝大圻,2013年,大跨度斜張橋模態頻率的環境影響因素研究,重慶交通大學學報(自然科學版),第32卷,第6期,第1106-1110頁。
[26]L. Sun, Y. Zhou, and D. Xie, 2014, Temperature Effects on Modal Frequencies of Long-span Cable-stayed Bridges, Proceedings of 4th International Symposium on Life-Cycle Civil Engineering, Tokyo, Japan, pp. 1019-1097.
[27]孫利民、周毅、謝大圻,2015年,環境因素對斜拉橋模態頻率影響的周期特性,同濟大學學報(自然科學版),第43卷,第10期,第1454-1462頁。
[28]施惟盛,2015年,應用橋墩微振量測進行影響斜張橋沖刷監測之各項環境因素評估,國立雲林科技大學營建工程系碩士論文,吳文華教授指導。
[29]W. H. Wu, C. C. Chen, W. S. Shi, and C. M. Huang, 2017, Assessment of Environmental Effects in Scour Monitoring of a Cable-stayed Bridge Simply Based on Pier Vibration Measurements, Smart Structures and Systems, Vol. 20, No. 2, pp. 231-246.
[30]J. Chen, Y. L. Xu, R. C. Zhang, 2004, Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor:EMD-HT method, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 92, Issue 10, pp. 805-827.
[31]Dionysius M. Siringoringo, Yozo Fujino, 2008, System identification of suspension bridge from ambient vibration response, Engineering Structures, Vol.30, Issue 2, pp. 462-477.
[32]E. Cross, K. Worden, K. Y. Joo, and J. M. W. Brownjohn, 2010, Modelling Environmental Effects on the Dynamic Characteristics of the Tamar Suspension Bridge, Proceedings of the 28th IMAC, Jacksonville, USA, Vol. 5, pp. 21-32.
[33]鄭揚、丁幼亮、李愛群,2011年,環境條件影響下懸索橋模態頻率變異性的定量評價,振態與衝擊,第30卷,第8期,第230-236頁。
[34]R. Westgate, 2012, Environmental Effects on a Suspension Bridge’s Performance, Ph.D. Thesis, University of Sheffield, UK.
[35]N. M. Apaydin, Y. Kaya, E. Safak, and H. Alcik, 2012, Vibration Characteristics of a Suspension Bridge Under Traffic and No traffic conditions, Earthquake Engineering and Structural Dynamics, Vol. 41, No. 12, pp. 1717-1723.
[36]I. Laory, T. N. Trinh, T. F. C. Smith, and J. M. W. Brownjohn, 2014, Methodologies for Predicting Natural Frequency Variation of a Suspension Bridge, Engineering Structures, Vol. 80, pp. 211-221.
[37]R. Westgate, K. Y. Koo, and J. M. W. Brownjohn, 2015, Effect of Vehicular Loading on Suspension Bridge Dynamic Properties, Structure and Infrastructure Engineering, Vol. 11, No. 2, pp. 129-144.
[38]李安隆,2017年,根據現地微振量測評估人行吊橋之振態參數變化與環境因素效應,國立雲林科技大學營建工程系碩士論文,陳建州教授、吳文華教授指導。
[39]陳建州、吳文華、李安隆,2018年,根據現地微振量測評估人行吊橋之振態參數變化與環境因素效應,第十四屆結構工程研討會論文集,台中市。
[40]陳明徹,2012年,應用隨機子空間系統識別方法探討橋樑結構健康診斷,台灣大學土木工程學研究所碩士論文,羅俊雄教授指導。
[41]J. A. Lopez and M. A. Astiz, 2014, An Experimental Analysis of the Evolution of Dynamic Parameters of a Long-span Metal Arch Bridge, Structural Engineering International, Vol. 24, No. 1, pp. 8-19.
[42]焦志欽、胡利平、韓大建,2010年,溫度對橋梁動力特性的影響研究,科學技術與工程,第10卷,第31期,第785-7689頁。
[43]Hui Li, Shunlong Li, Jinping Ou, Hongwei Li, 2010, Modal identification of bridges under varying environmental conditions:Temperature and wind effects, Structural Control and Health Monitoring, Vol. 17, Issue 5.
[44]L. Wang, J. Hou, and J. Ou, 2011, Temperature Effect on Modal Frequencies for a Rigid Continuous Bridge Based on Long Term Monitoring, Proceedings of SPIE-The International Society for Optical Engineering, San Diego, USE, Vol. 7983.
[45]Peter Moser, Babak Moaveni, 2011, Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge, Mechanical Systems and Signal Processing, Vol. 25, Issue 7, pp. 2336-2357.
[46]王蕾,2013年,大跨鋼構-連續梁橋結構性能的運營環境影響與規律分析,哈爾濱工業大學博士論文,歐進萍教授指導。
[47]N. A. Londono, D. T. Lau, and M. Rahman, 2013, Characteristics of Dynamic Monitoring Data and Observed Behavior of the Confederation Bridge due to Operational Load Variations, Canadian Journal of Civil Engineering, Vol. 40, No. 5, pp. 393-409.
[48]李嘉維、夏樟華、余印根、林友勤,2014年,基於長期動力特性監測數據的大跨度橋梁安全性能評估,福州大學學報,第42卷,第4期,第596-605頁。
[49]余印根,2014年,環境溫度對連續剛構橋模態頻率的影響,振動、測試與診斷,第34卷,第1期,第69-76頁。
[50]N. A. Londono, B. T. Lau, and M. Rahman, 2013, Characteristics of Dynamic Monitoring Load Variations, Canadian Journal of Civil Engineering, Vol. 40, No. 5, pp.393-409.
[51]王勝威、吳文華、陳建州、賴國龍,2013年,以隨機子空間識別法進行斜張鋼纜之各振態參數識別,第四屆海峽兩岸四地高校師生土木工程監測與控制研討會論文集,呼和浩特,中國。
[52]W. H. Wu, C. C. Chen, S. W. Wang, and G. Lai, 2014, Modal parameter determination of stay cable with an improved algorithm based on stochastic subspace identification, Proceedings of 7th European Workshop on Structural Health Monitoring, Nantes, France, pp. 2036-2043.
[53]W. H. Wu, S. W. Wang, C. C. Chen, and G. Lai, 2016, Application of Stochastic Subspace Identification for Stay Cables with an Alternative Stabilization Diagram and Hierarchical Sifting Process, Structural Control and Health Monitoring, Vol. 23, No. 9, pp. 1194-1213.
[54]W. H. Wu, C. C. Chen, S. W. Wang, and G. Lai, 2016, Mode Identifiability of a Cable-stayed Bridge under Different Excitation Conditions Assessed with an Improved Algorithm Based on Stochastic Subspace Identification, Smart Structures and Systems, Vol. 17, No.3, pp. 363-389.
[55]W. H. Wu, C. C. Chen, S. W. Wang, and G. Lai, Appropriate selection of time lag parameter in applications of stochastic subspace identification for several types of civil structures, Mechanical Systems and Signal Processing, in review.
[56]W. H. Wu, J. W. Jhou, C. C. Chen, and G. Lai, 2018, Long-term Structural Health Monitoring of an Office Building Based on a Recursive Stochastic Subspace Identification Algorithm, Proceedings of the 7th World Conference on Structural Control and Monitoring, Qingdao, China.
[57]W. H. Wu, C. C. Chen, J. W. Jhou, and G. Lai, A Novel Recursive Stochastic Subspace Identification Algorithm with Its Application in Long-term Structural Health Monitoring of Office Buildings, Smart Structures and Systems, accepted.
[58]陳鈺傑,2019年,車載之質量與振動效應對於各型橋梁振態頻率的影響,國立雲林科技大學營建工程系碩士論文,陳建州教授、吳文華教授指導。
[59]劉郡晏,2016年,根據鋼纜索力並考量環境因素影響之斜張橋損傷診斷,國立雲林科技大學工程科技研究所博士論文,陳建州教授、吳文華教授指導。

電子全文 電子全文(網際網路公開日期:20250406)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊