跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昱昇
研究生(外文):WANG, YU-SHENG
論文名稱:透過隧道研究在不同路段的車輛污染物排放因子
論文名稱(外文):Vehicles’ Pollutant Emission Factors Conducted by a Tunnel Study in Different Sections
指導教授:謝祝欽謝祝欽引用關係
指導教授(外文):HSIEH, CHU-CHIN
口試委員:謝祝欽張艮輝顏有利張仁瑞
口試委員(外文):HSIEH, CHU-CHINZHANG, GEN-HUIYAN, YOU-LIZHANG, REN-RUI
口試日期:2020-04-17
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:116
中文關鍵詞:多重線性回歸汽/柴油車TEDS 10.0VOCsT/B 比值
外文關鍵詞:MLRgasoline/ diesel vehiclesTEDS 10.0VOCsT/B ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究已於 2019 年執行四次八卦山隧道採樣,分別於隧道入口處及隧道內 5 處避車彎同步採集氣狀污染物 (CO、CO2、NOx、NMHC 及 VOCs)、隧道風速及車輛數等,透過不同路段之濃度差計算排放係數,並利用多重線性回歸的數值方法分析排放係數與汽柴油車輛比例的關係。
現場實測結果顯示,汽/柴油車比例範圍約 75-78:22-25 (%),平均風速約為 4.7 ± 0.7 m s-1。各氣狀污染物由隧道入口處至隧道內各避車彎呈現濃度累積的趨勢,推估以避車彎 2 至避車彎 4 (1,600-3,200 (m)) 的路段採樣所得污染物濃度較為合理,此路段的 CO、CO2、NOx 及 NMHC 排放係數分別為 1.14 ± 0.44、168.82 ± 58.9、0.32 ± 0.07 及 0.15 ± 0.05 (g km-1 veh-1)。VOCs 排放係數中,以異戊烷、甲苯、乙烯、1-丁烯及丙烯為主,排放係數分別為 6.5、6.5、5.8、4.7 及 4.4 (mg km-1 veh-1)。採樣時間坐落於春、夏及秋三季,並於汽油車佔多數 (約 75 %) 及車速限制 (80 km hr-1) 下,(m,p)-X/E 比值介於 1.5 – 1.8 之間, T/B 比值於 2.0 – 2.3 區間,代表八卦山隧道車輛排放的特性。
利用數值方法解析得知柴油車 NOx 與 CO2 的排放約為汽油車的 5.8 及 4.7 倍,汽油車以 CO 及 NMHC 排放為主,此結果與 TEDS 10.0 針對 2016 年線源排放量的推估結果相符。總而言之,本研究與臺灣學者 Hwa et al. (2002) 及 Chiang et al. (2007) 的數據比對後,得知 BTEX 排放係數逐年降低,主要歸功於臺灣的油品成份及車輛排放管制加嚴成效顯著。

The issue of the emission contribution of mobile sources on air pollutants has been brought in great attention. In order to obtain the current vehicle driving emission factors (EFs) to update taiwan emission data system (TEDS), the study investigated the air pollutants at five locations simultaneously at the Baguashan tunnel in four seasons in 2019. The target pollutants included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), non-methane hydrocarbon (NMHC) and volatile organic compounds (VOCs ).The study focused on air pollutant concentrations, compositions, and related parameters such as vehicle types, vehicle numbers, and tunnel wind speeds, which were further calculated with the concentration gradient in different sections to establish reasonable EFs. The correlation between EFs and vehicle types is analyzed by Multiple Linear Regression (MLR).
As a result of the field investigation, the ratio of gasoline vehicles and diesel vehicles was 75 – 78 and 22 – 25 (%), and the wind speed was on an average of 4.7 ± 0.7 m s-1. The air pollutant concentrations showed the accumulative trend from the tunnel entrance to outlet sections. The reasonable and presentative EFs were obtained between the section number 2 to 4 (1, 600-3,200 (m)) indicated the EFs of CO, CO2, NOx, and NMHC were 1.14 ± 0.44, 168.8 ± 58.9, 0.32 ± 0.07, and 0.15 ± 0.05 (g km-1veh-1), respectively. The EFs of main VOCs, Isopentane, Toluene, Ethylene, 1-Butene, Propylene, were 6.5, 6.5, 5.8, 4.7, and 4.4 (mg km-1veh-1) respectively. The investigation was conducted in spring, summer, and fall. Under the conditions of 75% gasoline vehicles (among all vehicles) and 80 km hr-1 speed limit; we found that (m,p)-X/E ratio was between 1.5 – 1.8 and T/B ratio was above 2.0, which demonstrated the characteristics of vehicle emission in Baguashan Tunnel.
As a result of numerical analysis, NOx and CO2 EFs of diesel vehicles were 4.7 to 5.8 times more than those of gasoline vehicles, in which CO and NMHC were main EFs. The result corresponds to TEDS 10.0 in 2016. In conclusion, the results of the current study in comparison with those of Hwa et al. (2002) and Chiang et al. (2007) suggest that BTEX EFs are gradually decreasing annually, which can credit to the vehicle and oil composition control.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章、 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
1.3 研究架構 4
第二章、 文獻回顧 5
2.1 臺灣移動源現況 5
2.1.1 臺灣機動車分析 5
2.1.2 臺灣機動車車齡分析 (不含機車) 6
2.2 移動源排放污染物概述 7
2.3 臺灣車用汽柴油成份管制標準 8
2.4 國內外汽柴油車管制標準及期程 9
2.5 八卦山隧道概述 12
2.6 國內外隧道車輛排放係數 12
2.6.1 隧道 CO、CO2、NOX 及 NMHC 排放係數 12
2.6.2 隧道 VOCs 特徵及排放係數 16
2.7 臺灣 TEDS 10.0 車輛排放係數 21
2.7.1 不同管制期數及車種的排放係數 21
2.7.2 不同車速下 CO、NOx 及 NMHC 排放係數 22
第三章、 研究方法及設備 25
3.1 採樣規劃 25
3.2 儀器設備及分析方法 27
3.2.1 採樣設備 27
3.3.2 分析方法 28
3.3 車輛污染物之排放係數計算 29
3.4 利用數值方法解析氣狀污染物與車種關係 29
3.5 臭氧生成潛勢計算 30
第四章、 結果與討論 32
4.1 隧道車輛數及風速解析 32
4.2 隧道內溫度、濕度及壓力分佈 32
4.3 隧道內空氣污染物濃度分佈 33
4.3.1 CO 濃度分佈 34
4.3.2 CO2 濃度分佈 34
4.3.3 NOx 及 NO濃度分佈 35
4.3.4 NMHC 濃度分佈 37
4.4 隧道內 VOCs 濃度分佈 38
4.4.1 隧道內 VOCs 各別物種濃度分析 38
4.4.2 隧道內 VOCs 五大類比例分析與指標物種 40
4.4.3 物種比值探討 44
4.4.4 VOCs 臭氧生成潛勢 47
4.5 車輛排放係數 50
4.5.1 探討隧道內不同路段的排放係數 50
4.5.2 VOCs 排放係數探討 52
4.5.3 數值方法解析氣狀污染物與車種關係 54
第五章、 結論與建議 58
5.1 結論 58
5.2 建議 60
參考文獻 61
附錄 66
附錄 A 儀器設備規格 67
附錄 B 儀器設備品保/品管 (QA/QC) 69
附錄 C 車輛辨識系統之可靠性測試 77
附錄 D 數值方法–多重線性回歸資料庫 79

Ayoko, G. A., Singh, A., Lim, M. C. H., Ristosvski, Z. D., Jayaratne, E. R., Morawska, L., King, G., Christensen, E., 2014, “Characterization of VOCs from LPG and unleaded petroleum fuelled passenger cars”, FUEL, Vol. 115, pp. 636-643.
Araizaga, A. E., Mancilla, Y., Mendoza, A., 2013, “Volatile organic compound emissions from light-duty vehicles in Monterrey, Mexico: a tunnel study”, International Journal of Environmental Research, Vol. 7, pp. 277-292.
Ait-Helal, W., Beeldens, A., Boonen, E., Borbon, A., Boréave, A., Cazaunaua, M., Chen, H., Daële, V., Dupart, Y., Gaimoz, C., Gallus, M., George, C., Grand, N., Grosselin, B., Herrmann, H., Ifang, S., Kurtenbach R., Maille, M., Doussin, J. F., 2015, “On-road measurements of NMVOCs and NOx: Determination of light-duty vehicles emission factors from tunnel studies in Brussels city center”, Atmospheric Environment, Vol. 122, pp. 799-807.
Adamović, D., Dorić, J., Miloradov, M. V., Adamović, S., Pap, S., Radonić, J., Sekulić, M. T., 2018, “The emission of BTEX compounds during movement of passenger car in accordance with the NEDC”, Science of the Total Environment, Vol. 639, pp. 339-349.
Colberg, C. A., Tona, B., Stahel, W. A., Meier, M., Staehelin, J., 2005, “Comparison of a road traffic emission model (HBEFA) with emissions derived from measurements in the Gubrist road tunnel, Switzerland”, Atmospheric Environment, Vol. 39, pp. 4703-4714.
Carter, W. P., 1994, “Development of ozone reactivity scales for volatile organic compounds”, Air & Waste, Vol. 44(7), pp. 881-899.
Chang, S. C., Lin, T. H., Lee, C. T., 2009, “On-road emission factors from light-duty vehicles measured in Hsuehshan Tunnel (12.9 km), the longest tunnel in Asia”, Environmental Monitoring and Assessment, Vol. 153, pp. 187-200.
Cheng, Y., Leea, S. C., Ho, K. F., Louie P. K. K., 2006, “On-road particulate matter (PM2.5) and gaseous emissions in the Shing Mun Tunnel, Hong Kong”, Atmospheric Environment, Vol. 40, pp. 4235-4245.
Chiang, H. L., Hu, C. S., Chen, S. Y., Wu, M. C., Ma, S. Y., Huang, Y. S., 2007, “Emission factors and characteristics of criteria pollutants and volatile organic compounds (VOCs) in a freeway tunnel study”, Science of The Total Environment, Vol. 381, pp. 200-211.
Cui, L., Wang, X. L., Ho, K. F., Gao, Y., Liu, C., Ho, S. H., Li, H. W., Lee, S. H., Wang, X. M., Jiang, B. O., Huang, Y., Chow, C., Watson, J. G., Chen, L. W., 2018, “Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study”, Atmospheric Environment, Vol. 177, pp. 64-74.
Cédric, L., Goriaux, M., Tassel, P., Perret, P., André, M., Liu, Y., 2016, “Impact of aftertreatment device and driving conditions on black carbon, ultrafine particle and NOx emissions for Euro 5 Diesel and gasoline vehicles”, Transportation Research Procedia, Vol. 14, pp. 3097-3088.
Deng, Y., Chen, C., Li, Q., Hu, Q., Yuan, H., Li, J., Li, Y., 2015, “Measurements of real-world vehicle CO and NOx fleet average emissions in urban tunnels of two cities in China”, Atmospheric Environment, Vol. 122, pp. 417-426.
Duan, J., Tan, J., Yang, L., Wu, S., Hao, J., 2008, “Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing”, Atmospheric Research, Vol. 88, pp. 25-35.
Grosjean, D., Grosjean, E., Gertler, A. W., 2001, “On-Road Emission of Carbonyls from Light-Duty and Heavy-Duty Vehickes” Environ. Sci. Technol., Vol. 35, pp. 45-53.
Hsieh, L. T., Wang, Y. F., Yang, H. H., Mi, H. H., 2011, “Measurements and Correlations of MTBE and BETX in Traffic Tunnel”, AAQR., Vol. 11, pp. 763-775.
Ho, K. F., Lee, S. C., Ho, W. K., Blake, D. R., Cheng, Y., Li, Y. S., Ho, S. S. H., Fung, K., Louie, P. K. K., Park, D., 2009, “Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong”, Atmospheric Chemistry and Physics, Vol. 9, pp. 7491-7504.
Hsu, Y. C., Tsai, J. H., Chen, H. W., Lin, W. Y., 2001, “Tunnel study of on-road vehicle emissions and the photochemical potential in Taiwan”, Chemosphere, Vol. 42, pp. 227-234.
Huang, C., Tao, S., Lou, S., Hu, Q.,Wang, H.,Wang, Q., Li, L.,Wang, H., Liu, J., Quan, Y., Zhou, L., 2017, “Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai”, Atmospheric Environment, Vol. 169, pp. 193-203.
He, L. Y., Hu, M., Zhang, Y. H., Huang, X. F., Yao, T. T., 2008, “Fine Particle Emissions from On-Road Vehicles in the Zhujiang Tunnel, China”, Environ. Sci. Technol., Vol. 42, pp. 4461-4466.
Hwa, M. Y., Hsieh, C. C., Wu, T. C., Chang, L. F. W., 2002, “Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area”, Atmospheric Environment, Vol. 36, pp. 1993-2002.
Jaiprakash, G. H., 2018, “On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX”, Atmospheric Environment, Vol. 174, pp. 132-193.
José, M. L., Antonio, G., Javier, M. S., Santiago, M. B., 2019, “Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions”, Energy Conversion and Management, Vol. 199, pp. 111987.
Kristensson, A., Johansson, C., Westerholm, R., Swietlicki, E., Gidhagen, L., Wideqvist, U., Vesely, V., 2004, “Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden”, AE International – Europe, Vol. 38, pp. 657-673.
Lu, S., Bai, Y., Zhang, G., Ma, J., 2003, “Study on the characteristics of vocs source profiles of vehicle exhaust and gasoline emission.”, Acta Sci. Nat. Univ. Pekin., Vol. 39 (4), pp. 507-511.
Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., Tang, D., 2008a, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I.”, Atmos. Environ., Vol. 42 (25), pp. 6247-6260.
Liu, Y., Shao, M., Lu, S., Chang, C. C., Wang, J. L., Fu, L., 2008b, “Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II.”, Atmos. Environ, Vol. 42 (25), pp. 6261-6274.
Liu, W. T., Chen, S. P., Chang, C. C., Yang, C. F., Liao, W. C., Su, Y. C., Wu, Y. C., Wang, C. H., Wang, J. L., 2014, “Assessment of carbon monoxide (CO) adjusted non-methane hydrocarbon (NMHC) emissions of a motor fleet-A long tunnel study”, Atmospheric Environment, Vol. 89, pp. 403-414.
Louis, C., Liu, Y., Tassel, P., Perret, p., Chaumond, A., Andre, M., 2016, “PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars”, Atmospheric Environment, Vol. 141, pp. 80-95.
Ma, C. M., Hong, G. B., Chang, C. T., 2011, “Influence of traffic flow patterns on air quality inside the longest tunnel in Asia”, Aerosol and Air Quality Research, Vol. 11, pp. 44-50.
Mancilla, Y., Mendoza, A., 2012, “A tunnel study to characterize PM2.5 emissions from gasoline-powered vehicles in Monterrey, Mexico”, Atmospheric Environment, Vol. 59, pp. 449-460.
Perkins J. L., Padró-Martínez L. T., Durant J. L., 2013, “Particle number emission factors for an urban highway tunnel”, Atmospheric Environment, Vol. 74, pp 326-337.
Pierson, W. R., Brachaczek, W. W., 1982, “Particulate matter associated with vehicles on the road. II”, Aerosol Science and Technology, Vol. 2, pp. 1-40.
Pierson, W. R., Gertler, A. W., Robinson, N. F., Sagebiel, J. C., Zielinska, B., Bishop, G. A., Stedman, D. H., Zweidinger, R. B., Ray, W. D., 1996, “Real-world automotive emissions—summary of studies in the Fort McHenry and Tuscarora mountain tunnels”, Atmospheric Environment, Vol. 30, pp. 2233-2256.
Russell, G. L., Miller, J. R., and Rind, D., 1995, “A Coupled Atmosphere-Ocean Model for Transient Climate Change Studies”, Atmospheric-Ocean, Vol. 33, pp. 683-730.
Schmid, H., Pucher, E., Ellinger, R., Biebl, P., Puxbaum, H., 2001, “Decadal reductions of traffic emissions on a transit route in Austria - results of the Tauerntunnel experiment 1997”, Atmospheric Environment, Vol. 35, pp. 3585-3593.
Steinemann, U., Zumsteg, F., 2003, “Verkehrs- und Schadstoffmessungen 2002 im Gubristtunnel (Traffic and trace gas pollutant measurements 2002 in the Gubrist tunnel)”, Bericht US 89-16-11 fu‥ r OSTLUFT durch Amt fu‥ r Abfall, Wasser. Energie und Luft des Kantons Zu‥ rich (AWEL), Switzerland.
Song, C., Ma, C., Zhang, Y., Wang, T., Wu, L., Wang, P., Liu, Y., Li, Q., Zhang, J., Dai, Q., Zou, C., Sun, L., Mao, H., 2018, “Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China”, Science of The Total Environment, Vol. 637-638, pp. 431-442.
Wang, G., Cheng, S., Wei, W., Zhou, Y., Yao, S., Zhang, H., 2016, “Characteristics and source apportionment of VOCs in the suburban area of Beijing. China”, Atmospheric Pollution Research, Vol. 7, pp. 711-724.
Yao, Z., Shen, X., Ye, Y., Cao, X., Jiang, X., Zhang, Y., He, K., 2015, “On-road emission characteristics of VOCs from diesel trucks in Beijing, China”, Atmospheric Environment, Vol. 103, pp. 87-93.
Zhang, Q., Wu, L., Fang, X. Z., Liu, M. Y., Zhang, J., Shao, M., Lu, S., Mao, H. G., 2018, “Emission factors of volatile organic compounds (VOCs) based on the detailed vehicle classification in a tunnel study”, Science of The Total Environment, Vol. 624, pp. 878-886.
Zhang, Y. L., Wang, X. M., Li, G. H., Yang, W. Q., Huang, Z. H., Zhang, Z., Huang, X. Y., Deng, W., Liu, T. G., Huang, Z. H., Zhang, Z. Y., 2015, “Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China”, Atmospheric Environment, Vol. 122, pp. 876-884.
Zhang, Y., Wang, X., Wen, S., Herrmann, H., Yang, W., Huang, X., Zhang, Z., Zhonghui, H., He, Q., George, C., 2016, “On-road vehicle emissions of glyoxal and methylglyoxal from tunnel tests in urban Guangzhou, China”, Atmospheric Environment, Vol. 127, pp. 55-60.
交通部,2019,機動車輛登記數統計查詢網。
仲崇毅,2002,交通隧道三維風場及氣態污染物擴散現象之研究,國立中山大學環境工程研究所博士論文。
行政院環境保護署,2019,空氣污染排放清冊 (TEDS 10.0)。
行政院環境保護署,2017,移動污染源排放總量推估及管制專案工程計畫。
林浩然,2015,消防月刊 (彰化縣消防局)。
李原豪,2009,車輛排放尾氣之揮發性有機物特性研究,國立聯合大學環境與安全衛生工程學系碩士論文。
張栢瑞,2008,雪山隧道內車輛與豎井通風系統之揮發性有機物排放量推估,國立中山大學環境工程研究所博士論文。
高邦基、謝哲雄、常書娟,2012,台 76 線八卦山隧道第一階段通車之營運管理。
許中杰,1995,長隧道通風車行效應與半二維向流場之研究。
許書銘,2009,列車活塞效應對於地下車站的設計風壓評估,中興工程顧問社。
張章堂、郭鎮銘、邱奕仁、徐暘、林明漢、王培華,2018,科技部/環保署空污防制科技學術合作計畫:長隧道內車輛廢氣排放調查
陳怡全,2009,雪山隧道空氣污染物實場調查分析,國立中山大學環境工程研究所碩士論文。
劉文治,2013,「大氣中揮發性有機物與溫室氣體監測與模式估算」,國立中央大學化學學系博士論文。
謝祝欽、顏有利、蔡岳錡、莊晏承、孫振康、陳均豪、杜映琪、簡瑞庭,2018,科技部/環保署空污防制科技學術合作計畫:隧道內車輛排放之污染物排放係數之調查與車種解析成果報告。
電子全文 電子全文(網際網路公開日期:20250601)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊