(3.238.186.43) 您好!臺灣時間:2021/03/01 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅敬雯
研究生(外文):LUO, JING-WEN
論文名稱:應用本質較安全技術探討金屬拋光作業場所之鎂鋁合金火災爆炸風險
論文名稱(外文):Evaluation of Fire and Explosion Risk of Magnesium Aluminum Alloy in Metal Polishing Workplace by Inherent Safety Technology
指導教授:徐啟銘徐啟銘引用關係李樹華李樹華引用關係
指導教授(外文):SHU, CHI-MINLEE, SHUH-HWA
口試委員:陳豐華游美利王義文
口試委員(外文):CHEN, JIANN-RONGYOU, MEI-LIWANG, YIH-WEN
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:101
中文關鍵詞:鎂鋁合金拋光研磨表觀活化能可燃性參數粉塵爆炸
外文關鍵詞:Magnesium-aluminum alloyPolishingApparent activation energyFlammability parametersDust explosion hazards
相關次數:
  • 被引用被引用:1
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
第二章 文獻回顧 8
2-1 燃燒爆炸基本介紹 8
2-1-1 火災 8
2-1-2 爆炸 10
2-1-3 爆轟產生方式 11
2-1-4 爆炸五元素 12
2-1-5 火災與爆炸的區別 13
2-2 粉塵爆炸的特點 13
2-2-1 粉塵危害程度之指標 14
2-2-2 火焰燃燒方式 15
2-2-3 爆炸過壓破壞力評估 16
2-3 鎂合金 18
2-4 惰化劑選用 18
2-4-1 碳酸氫鈉介紹 19
2-4-2 抑制劑粒徑對可燃物火焰程度的影響 20
2-5 抑制劑惰化可燃性粉塵主要機制 21
第三章 實驗設備及操作流程 25
3-1 現勘訪視 25
3-2 實驗設備 32
3-2-1 粒徑分析儀 (Laser particle sizer) 32
3-2-2 20 升爆炸鋼球 (20-L-apparatus) 33
3-2-3 最小點火能量 (Minimum ignition energy, MIE) 37
3-2-4 粉塵層最小著火溫度測試儀 (Minimum ignition temperatures of dust layer, MITL) 39
3-2-5 粉塵雲最小著火溫度測試儀 (Minimum ignition temperatures of dust cloud, MITC) 40
3-2-6 傅立葉紅外光譜儀 (Fourier transform infrared spectrometer, FTIR) 42
3-2-7 X-射線繞射分析 (X-ray diffractometer, XRD) 43
3-2-8 感應耦合電漿原子發射光譜儀 (Inductively coupled plasma optical emission spectrometer, ICP-OES) 44
3-2-9 掃描式電子顯微鏡 (Scanning electron microscopy–energy dispersive spectroscopy, SEM–EDS) 45
3-2-10 同步熱重分析儀 (Simultaneous thermogravimetric analyzer, STA) 46
3.3 實驗步驟 48
3-3-1 樣品配置及前處理 48
3-3-2 實驗操作方法 49
第四章 結果與討論 52
4-1 粒徑分析儀粒徑分佈分析結果 52
4-2 20-L爆炸鋼球分析結果 54
4-3 最小點火能量分析結果 58
4-4 粉塵層最小著火溫度測試儀分析結果 60
4-5 粉層雲最小著火溫度測試儀分析結果 61
4-6 傅立葉紅外光譜儀分析結果 63
4-7 X-射線繞射分析分析結果 64
4-8 電子顯微鏡分析結果 65
4-9 同步熱重分析儀分析結果 68
4-10 添加抑制劑惰化分析結果 74
第五章 結論與建議 76
5-1 結論 76
5-2 建議 78
參考文獻 79
A. Di Benedetto, P. Russo, P. Amyotte, N. Marchand, Modelling the effect of particle size on dust explosions, Chem. Eng. Sci. 65 (2010) 772–779.
A. Fumagalli, M. Derudi, R. Rota, J. Snoeys, S. Copelli, Prediction of the deflagration index for organic dusts as a function of the mean particle diameter, J. Loss Prev. Process Ind. 50 (2017) 67–74.
A. Hamins, Flame extinction by sodium bicarbonate powder in a cup burner, Symp. (Int.) Combust. 27 (1998) 2857–2864.
A. Iliyas, K. Hawboldt, F. Khan, Thermal stability investigation of sulfide minerals in DSC, J. Hazard. Mater. 178 (2010) 814–822.
A. Janes, A. Vignes, O. Dufaud, D. Carson, Experimental investigation of the influence of inert solids on ignition sensitivity of organic powders, Process Saf. Environ. 92 (2014) 311–323.
A. Shafiekhani, H. Saeidfirozeh, Influence of Fe@MnAl2O4 and synthesis of novel compound Mn0.83Fe0.21Al1.96O4, Physica B. 421 (2013) 122–126.
A.P. Grosvenor, E.M. Bellhouse, A. Korinek, M. Bugnet, J.R. McDermid, XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4, Appl. Surf. Sci. 379 (2016) 242–248.
A.S. Agar Ozbek, J. Weerheijm, K. van Breugel, High speed photography technique for measuring impact strength of porous concrete, Constr. Build. Mater. 186 (2018) 1092–1104.
ASTM E1226, Standard test method for pressure and rate of pressure rise for combustible dusts, ASTM International, West Conshohocken, PA, USA, (2012).
ASTM E2019-3, Standard test method for minimum ignition energy of a dust cloud in air1, ASTM International, West Conshohocken, PA, USA, (2007).
ASTM E681–85, Standard test method for concentration limits of flammability of chemicals, USA, (1991).
ASTM E698-11, Standard test method for arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa method, ASTM International, West Conshohocken, PA, USA, (2012).
ASTM E918–83, Standard practice for determining limit of flammability of chemicals at elevated temperatures and pressures, USA, (2008).
B. Gan, B. Li, H. Jiang, M. Bi, W. Gao, Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives, J. Hazard. Mater. 351 (2018) 346–355.
B. Lewis and G. Von Elbe, Combustion flames, and explosions of gases, 3rd ed., Acad. Press, Orlando. FL., USA, (1987).
B.A. Williams, J.W. Fleming, CF3Br and other suppressants: Differences in ef- fects on flame structure, Proc. Combust. Inst. 29 (2002) 345–351.
B.A. Williams, J.W. Fleming, Suppression mechanisms of alkali metal compounds, 1999 Halon Options Technical Working Conference (1999) 157–169.
British Standards Institution BS EN 13821, Potentially explosive atmosphere, explosion, prevention, and protection. Determination of minimum ignition energy of dust/air mixtures, London, UK, (2002).
C. Cesana, AG Kuhner, R. Siwek, FireEx Consultant Ltd, Operating for the 20-L-Apparatus Manual 7.0, Kuhner, Birsfelden, Switzerland, (2014).
C. Cesana, R. Siwek, MIEK 3. Minimum ignition energy 3.3. Kühner AG, Switzerland, (2003).
C. Huang, X. Chen, B. Yuan, H. Zhang, H. Dai, S. He, Y. Zhang, Y. Niu, S. Shen, Suppression of wood dust explosion by ultrafine magnesium hydroxide, J. Hazard Mater. 378 (2019) 120723.
C.C. Zhao, M.J. Chen, H.R. Qiu, Infrared spectrograms analysis and typical absorption peaks identification of synthetic lubricants, Lubrication Engineering, 38 (2013).
Combustible dust hazard study,http://www.csb.gov/assets/1/19/dust_final_report_website_11-17-06.pdf。
CSB, Sugar dust explosion and fire, U.S. Chemical Safety and Hazard Investigation Board, Washington, DC, USA (2009), Report No. 2008-05-I-GA.
D. Castellanos, A. Lewandowski, A. Diaz, A.F. Mejia, V. Carreto, C. Mashuga, A.S. Rangwala, Z.D. Cheng, M.S. Mannan, Influence of particle size and crystalline levelon the efficiency of dust explosion inhibitors, Ind. Eng. Chem. Res. 53 (2014) 11527–11537.
D. Castellanos, P. Bagaria, C.V. Mashuga, Effect of particle size polydispersity on dust cloud minimum ignition energy, Powder Technol. 367 (1) (2020) 782–787.
D. Castellanos, V.H. Carreto-Vazquez, C.V. Mashuga, R. Trottier, A.F. Mejia, M.S. Mannan, The effect of particle size polydispersity on the explosibility characteristics of aluminum dust, Powder Technol. 254 (2014) 331–337.
D. Trees, K. Seshadri, Experimental studies of flame extinction by sodium bi- carbonate (NaHCO3) powder, Combust. Sci. Technol. 122 (1997) 215–230.
D.A. Crowl, J.F. Louvar, Chemical process safety: fundamentals with applications, 3rd edition, USA, (2006).
D.Y. Castellanos, The effects of particle size and crystallinity on the combustion behavior of particulated solids, Ph.D. Dissertation (Texas A&M University), 2013.
Dounia, O. Vermorel, T. Poinsot, Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles, Combust. Flame 193 (2018) 313–326.
G. Baudry, S. Bernard, P. Gillard, Influence of the oxide content on the ignition energies of aluminium powders, J. Loss Prev. Process Ind. 20 (2007) 330–336.
G. Li, H.X. Yang, C.M. Yuan, R.K. Eckhoff, A catastrophic aluminium-alloy dust explosion in China, J. Loss Prev. Process Ind. 39 (2016) 121–130.
H. Chelliah, P. Wanigarathne, A. Lentati, R. Krauss, G. Fallon, Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counter- flow flames, Combust. Flame 134 (2003) 261–272.
H. Jiang, M. Bi, B. Li, D. Zhang, W. Gao, Inhibition evaluation of ABC powder in aluminum dust explosion, J. Hazard Mater. 361 (2019) 273–282.
H.C. Wu, H.J. Ou, H.C. Hsiao, T.S. Shih, Explosion characteristics of aluminum nanopowders, Aerosol Air Qual. Res. 10 (2010) 38–42.
H.K. Chelliah, P.C. Wanigarathne, A.M. Lentati, R.H. Krauss, G.S. Fallon, Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counter flow flames, Combust. Flame 134 (2003) 261–272.
H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci. 6 (2007) 183–195.
H.M. Zhou, R.R. Chen, Q. Liu, J.Y. Liu, J. Yu, C. Wang, M.L. Zhang, P.L. Liu, J. Wang, Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy, Chem. Eng. J. 368 (2019) 261–272.
H.P. Jiang, M.S. Bi, B. Li, D.Q. Ma, W. Gao, Flame inhibition of aluminum dust explosion by NaHCO3and NH4H2PO4, Combust. Flame 200 (2019) 97–114.
H.P. Jiang, M.S. Bi, W. Gao, B. Gan, D.W. Zhang, Q. Zhang, Inhibition of aluminum dust explosion by NaHCO3with different particle size distributions, J. Hazard. Mater. 344 (2018) 902–913.
I.M. Fanebust, Study of the Influence of Particle Size and Moisture on the Explosibility of Dusts, Master’s Thesis, Høgskolen på Vestlandet, (2019).
J. Farjas, P. Roura, Isoconversional analysis of solid state transformations, J. Therm. Anal. Calorim. 109 (2011) 183–191.
J. Nakamura, Recent explosion accidents in the metal working industry, J. Jpn. Assoc. Saf. Eng. 41 (1994) 43–48.
J. Taveau, S. Hochgreb, L. Saul, R. Dirk, Explosion hazards of aluminum finishing operations, J. Loss Prev. Process Ind. 51 (2018) 84–93.
J.E. Going, J. Snoeys, Explosion protection with metal dust fuels, Process. Saf. Prog. 21 (4) (2002) 305–312.
J.H. Flynn, L.A. Wall, Thermal analysis of polymer by thermogravemetric analysis, J. Res. Natl. Bur. Stand. Sect. A70. 487 (1966).
K.S. Iya, S. Wollowitz, W.E. Kaskan, The mechanism of flame inhibition by sodium salts, Symp. (Int.) Combust. (1975) 329–336.
K.W. Stahmer, M. Gerhold, Study of the explosion reactions of sucrose, activated charcoal, polyethylene and lignite part 1: effect of variation in particle surface area upon explosion reaction, J. Loss Prev. Process Ind. 46 (2017) 177–184.
Krasnov V.A, Re–Analysis of the atmospheric and ionospheric effects of the flixborough explosion. J. Atmos, (2003) 1205–1212.
L. Marmo, D. Cavallero, M.L. Debernardi, Aluminum dust explosion risk analysis in metal workings, J. Loss Prev. Process Ind. 17 (2004) 449–465.
L.G. Zheng, Y.L. Wang, S.J. Yu, G. Li, X.C. Zhu, M.G. Yu, Y. Wang, The premixed methane/air explosion inhibited by sodium bicarbonate with different particle size distributions, Powder Technol. 354 (2019) 630–640.
M. Alderliesten, Mean particle diameters. Part III: an empirical evaluation of integration and summation methods for estimating mean particle diameters from histogram data, Part. Part. Syst. Charact. 19 (2002) 373.
M. Dewitte, J. Vrebosch, A. van Tiggelen, Inhibition and extinction of premixed flames by dust particles, Combust. Flame 8 (1964) 257–266.
M. Hertzberg, K.L. Cashdollar, I. Zlochower, D.L. Ng, Inhibition and extinction of explosions in heterogeneous mixtures, Symp. (Int.) Combust. (1985) 1691–1700.
M. Mittal, Explosion characteristics of micron-and nano-size magnesium powders, J. Loss Prev. Process Ind. 27 (2014) 55–64.
M. Nifuku, H. Katoh, Incendiary characteristics of electrostatic discharge for dust and gas explosion, J. Loss Prev. Process Ind. 14 (2001) 547–551.
M. Nifuku, S. Koyanaka, H. Ohya, C. Barre, M. Hatori, S. Fujiwara, S. Horiguchi, I. Sochet, Ignitability characteristics of aluminium and magnesium dusts that are generated during the shredding of post-consumer wastes, J. Loss Prev. Process Ind. 20 (2017) 322–329.
M. Vanpee, P. Shirodkar, A study of flame inhibition by metal compounds, Symp. (Int.) Combust. 17 (1979) 787–795.
M. Vanpee, P.P. Shirodkar, Characterization of physical, thermal and chemi-cal contributions of sodium bicarbonate particles in extinguishing counterflow nonpremixed flames, 5th ASME/JSME Thermal Engineering Joint Conference (1999).
M.Y. Gu, X. Chen, C.C. Wu, X.H. He, H.Q. Chu, F.S. Liu, Effects of particle size distribu-tion and oxygen concentration on the propagation behavior of pulverized coal flames in O2/CO2 atmospheres, Eng. Fuel. 31 (2017) 5571–5580.
M.Z. Kazmi, Experimental Study of Polyethylene and Sulfur Dust Explosion Characteristics, Doctoral Dissertation, (2018).
Magnesium alloy MSDS,http://www.ltschem.com/msds/AlMg.pdf。
N.D. Nikolić, K.I. Popov, L.J. Pavlović, M.G. Pavlović, The effect of hydrogen code position on the morphology of copper electrodeposits. I. The concept of effective overpotential, J. Electroanal. Chem. 588 (2006) 88–98.
N.S. Kuai, W. Huang, B. Du, J. Yuan, Z. Li, Y. Gan, J. Tan, Experiment-based investigations on the effect of ignition energy on dust explosion behaviors, J. Loss Prev. Process Ind. 26 (4) (2013) 869–877.
NFPA 68, Standard on explosion protection by deflagration venting, USA, (2007).
NFPA, Standard for the prevention of fire and dust explosions from the manufacturing, processing, and handling of combustible particulate solids, NFPA 654 National Fire Protection Association, Quincy, Massachusetts, USA, (2019).
NFPA, Standard on explosion prevention systems, NFPA 69 National Fire Protection Association, Quincy, Massachusetts, USA (2017).
O. Dounia, O. Vermorel, T. Poinsot, Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles, Combust. Flame 193 (2018) 313–326.
O. Dufaud, M. Traore, L. Perrin, S. Chazelet, D. Thomas, Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere, J. Loss Prev. Process Ind. 23 (2) (2010) 226–236.
O. Dufaud, M. Traoré, L. Perrin, S. Chazelet, D. Thomas, Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere, J. Loss Prev. Process Ind. 23 (2010) 226–236.
P. Laffitte, R. Delbourgo, J. Combourieu, J. Dumont, The influence of particle di- ameter on the specificity of fine powders in the extinction of flames, Combust. Flame 9 (1965) 357–367.
P. Russoa, P.R. Amyotte, F.I. Khan, A.D. Benedetto, Modelling the effect of particle size on dust explosions, J. Loss Prev. Process Ind. 26 (2013) 1634–1638.
P. van der Wel, S. Lemkowitz, B. Scarlett, K. van Wingerden, A study of particle factors affecting dust explosions, Part. Part. Syst. Charact. 8 (1991) 90–94.
P.R. Amyotte, An Introduction to Dust Explosions. Understanding the Myths and Realities of Dust Explosions Fora Safer Workplace, Butterworth-Heine-man, Elsevier, Amsterdam, (2013).
P.R. Amyotte, Some myths and realities about dust explosions, Process Saf. Environ. Prot. 92 (4) (2014) 292–299.
P.R. Santhanam, V.K. Hoffmann, M.A. Trunov, E.L. Dreizin, Characteristics of aluminum combustion obtained from constant-volume explosion experiments, Combust. Sci. Technol. 182 (2010) 904–921.
Paola Russoa, P.R. Amyotte, F.I. Khan, A.D. Benedetto, Modelling the effect of particle size on dust explosions, J. Loss Prev. Process Ind. 26 (6) (2013) 1634–1638.
Q. Li, B. Lin, W. Li, C. Zhai, C. Zhu, Explosion characteristics of nano-aluminum powder-air mixtures in 20 L spherical vessels, Powder Technol. 212 (2011) 303–309.
Q. Zhang, B. Zhang, Effect of ignition delay on explosion parameters of corn dust/air in confined chamber, J. Loss Prev. Process Ind. 33 (2015) 23–28.
R. Fan, Y. Jiang, W. Li, C. Xiong, R. Qiu, Investigation of the physical and chemical effects of fire suppression powder NaHCO3 addition on methane-air flames, Fuel 257 (2019) 116048.
R. Friedman, J. Levy, Inhibition of opposed jet methane-air diffusion flames. the effects of alkali metal vapours and organic halides, Combust. Flame 7 (1963) 195–201.
R. Kuracina, Z. Szabová, E. Buranská, Study of explosion characteristics of the wheat flour dust clouds in dependence of the particle size distribution, Res. Pap. Facul. Mater. Sci. Technol. Slovak Univ. Technol. 27 (44) (2019) 65–71.
R. Mitsui, T. Tanaka, Simple models of dust explosion. Predicting ignition temperature and minimum explosive limit in terms of particle size, Ind. Eng. Chem. Process Des. Dev. 12 (3) (1997) 384–389.
R.A. Ogle, Dust Explosion Dynamics, Butterworth-Heinemann, (2016).
R.F. Schwab, Dust, Fire protection handbook, Section 3, Chapter 12.
R.K. Eckhoff, Dust Explosions in the Process Industries: Identification, Assessment and Control of Dust Hazards, Gulf Professional Publishing, (2003).
R.S. Rana, R. Purohit, S. Das, Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminium alloys and aluminium alloy composites, Int. J. Sci. Eng. Res. 2 (2012).
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pe´rez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (2011) 1–19.
S.F. Wang, X.F. Wei, H.J. Gao, Y. Wei, Effect of amorphous alumina and α-alumina on optical, color, fluorescence properties and photocatalytic activity of the MnAl2O4 spinel oxides, Optik. 185 (2019) 301–310.
S.H. Liu, C.R. Cao, W.C. Lin, C.M. Shu, Experimental and numerical simulation study of the thermal hazards of four azo compounds, J. Hazard. Mater. 365 (2019) 164–177.
SDS, Safety data sheet, Occupational safety and health administration, ministry of labor, Taiwan, ROC (2016).
T. Abbasi, S.A. Abbasi, 2007, Dust explosions-cases, causes, consequences, and control, J. Hazard. Mater. 140 (2007) 7–44.
T. Abbasi, S.A. Abbasi, Dust explosions-cases, causes, consequences, and control, J. Hazard. Mater. 140 (2007) 7–44.
T. Matsuda, Kinzoku no Funjin Bakuhatsu Jirei (case study of metal powder explosion), Kasai, Bull. Jpn. Assoc. Fire Sci. Eng. 44 (1994) 24–29.
T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn, 38 (1965) 1881–1886.
T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnesium Alloys 7 (2019) 536–544.
V. Babushok, K. McNesby, A. Miziolek, R. Skaggs, Modeling of synergistic ef- fects in flame inhibition by 2-H heptafluoropropane blended with sodium bi- carbonate, Combust. Flame 133 (2003) 201–205.
V.J. Clancey, Diagnostic features of explosion damage, Sirth international meeting of forensic sciences, Edinburgh, (1972).
V.K. Bind, S. Roy, C. Rajagopal, A reaction engineering approach to modeling dust explosions, Chem. Eng. J. 207 (2012) 625–634.
W. Bartknecht, Brenngas-und Staubexplosionen, Forschungsbericht F45. Koblenz Bundesinstitut für Arbeitsschutz, Federal Republic of Germany, (1971).
W. Bartknecht, Explosionen, Ablauf und schutzmassnahmen, Springer-Verlag, Berlin, Germany (1981).
W. Gao, T. Mogi, J.H. Sun, J.L. Yu, R. Dobashi, Effects of particle size distributions on flame propagation mechanism during octadecanoyl dust explosions, Powder Technol. 249 (2013) 168–174.
W. Hu, J.M. Smith, T. Do ̆gu, G. Do ̆gu, Kinetics of sodium bicarbonate decompo-sition, AIChE J. 32 (1986) 1483–1490.
W. Rosser, S. Inami, H. Wise, The effect of metal salts on premixed hydrocar- bon-air flames, Combust. Flame 7 (1963) 107–119.
W. Rosser, S. Inami, H. Wise, The effect of metal salts on premixed hydrocar- bon-air flames, Combust. Flame 7 (1963) 107–119.
W. Xu, Y. Jiang, R. Qiu, X.Y. Ren, Influence of halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames, Combust. Flame182 (2017) 1–13.
X. Chen, H. Zhang, X. Chen, X. Liu, Y. Niu, Y. Zhang, Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution, J. Loss Prev. Process Ind. 49 (2017) 905–911(S0950423017301699).
X.F. Chen, H.M. Zhang, X. Chen, X.Y. Liu, Y. Niu, Y. Zhang, B.H. Yuan, Effect of dust ex-plosion suppression by sodium bicarbonate with different granulometric distribu-tion, J. Loss Prev. Process Ind. 49 (2017) 905–911.
X.K. Chen, L. Lin, Z.M. Luo, J. Deng, Experiment study on controlling gas explosion by water-depressant, J. China Coal Soc. 31 (5) (2006) 603–606.
X.Y. Zhang, J.L. Yu, W. Gao, D.W. Zhang, J.H. Sun, S. Guo, R. Dobashi, Effects of particle size distributions on PMMA dust flame propagation behaviors, Powder Technol. 317 (2017) 197–208.
Y. Cao, H. Su, L.F. Ge, Y.Y. Li, Y.X. Wang, L.F. Xie, B. Li, Ignition sensitivity and flame propagation of zirconium powder clouds, J. Hazard. Mater. 365 (2019) 413–420.
Y. Xiao, S.J. Ren, J. Deng, C.M. Shu, Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion, Fuel 227 (2018) 325–333.
Y. Yan, Z.Y. Han, L.S. Zhao, Z.M. Du, X.M. Cong, Study on the relationship between the particle size distribution and the effectiveness of the K-powder fire extinguishing agent, Fire Mater. 42 (2018) 336–344.
Y. Yuzuriha, W. Gao, T. Mogi, R. Dobashi, Effects of particle size distributions on flame propagation behavior through dust clouds of PMMA, J. Loss Prev. Process Ind. (2017) 1–7.
Z. Yuan, N. Khakzad, F. Khan, P. Amyotte, Dust explosions: A threat to the process industries, Process Saf. Environ. Prot. 98 (2015) 57–71.
Z.H. Zhang, J.W. Zhang, C.F. Cao, K.Y. Guo, L. Zhao, G.D. Zhang, J.F. Gao, L.C. Tang, Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response, Chem. Eng. J. 386 (2020) 123894.
吳鴻鈞、歐新榮:奈米微粒研磨做一爆炸預防研究。行政院勞工委員會勞工安全衛生研究所,IOSH-S304,2007。
林國雄、仇敏,2007,防火防爆工程,三版,行政院新聞局版板台業字第 5361 號,全威圖書有限公司,新北市。
林農凱,2010,水蒸氣惰化含氧碳氫化合物之爆炸界線影響及其定性組成份析研究,碩士論文,國立雲林科技大學環安所,斗六市。
張一岑,1991,有害廢棄物焚化技術,聯經出版公司,台北市。
張一岑,1999,防火與防爆,揚智文化有限公司,台北。
曾傳銘,2000,工業火災爆炸防範實務,揚智文化事業,台北。

電子全文 電子全文(網際網路公開日期:20250807)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔