跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周旻萱
研究生(外文):ZHOU,MIN-XUAN
論文名稱:蚯蚓轉化柴油污染土壤之可行性研究
論文名稱(外文):Feasibility of Earthworms Transforming Diesel Contaminated Soil
指導教授:萬騰州萬騰州引用關係
指導教授(外文):WAN,TERNG-JOU
口試委員:黃志彬白子易高博敏
口試委員(外文):HUANG,CHIH-PINPAI,TZU-YIKAO,PO-MIN
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:110
中文關鍵詞:柴油污染土壤總石油碳氫化合物安卓愛勝蚓尤金真蚓廢棄菇包
外文關鍵詞:Diesel-contaminated soilTotal petroleum hydrocarbonsEisenia andreiEudrius eugeniaeSpent mushroom substrate waste
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在不同柴油污染濃度及不同基質配比,放入兩種品種之蚯蚓安卓愛勝蚓(Eisenia andrei)及尤金真蚓(Eudrilus eugeniae),在蚯蚓施放密度及有無添加米糠的情況下,探討蚯蚓生長情況及是否有效降解受污染土壤中總石油碳氫化合物濃度(TPH)。本研究實驗分為兩部分,第一部分為蚯蚓耐受性試驗在不同總石油碳氫化合物濃度下,對於兩種蚯蚓生長狀況及致死率;第二部分為蚯蚓品種及施放密度對於柴油污染土壤之轉化效果。柴油污染土壤摻配廢棄菇包在摻配比下,蚯蚓施放密度及有無加米糠,對於蚯蚓生長狀況及總石油碳氫化合物的降解效果。研究結果顯示: (1)柴油污染土壤對蚯蚓之耐受性試驗中,安卓愛勝蚓(Eisenia andrei)及尤金真蚓(Eudrilus eugeniae)對於總石油碳氫化合物耐受性介於100~250mg/kg。(2)在不同摻配比(柴油污染土壤:菇包,w/w)下,安卓愛勝蚓(Eisenia andrei)及尤金真蚓(Eudrilus eugeniae)均在0%及50%柴油污染土壤的摻配比下存活率最佳,其次為75%柴油污染土壤,最低為100%柴油污染土壤。(3)在不同蚯蚓施放密度下(5~25隻/ kg柴油污染土壤),安卓愛勝蚓(Eisenia andrei)及尤金真蚓(Eudrilus eugeniae)以施放密度5隻/ kg之組別為最佳。(4)安卓愛勝蚓(Eisenia andrei)在有添加米糠(每3天3g,為期60天)的組別下,蚯蚓的生長效果較佳,有無米糠相較之下,增殖率差異高達620%。(5)摻配菇包廢棄物可提高土壤中有機碳(提升48%)、氮(提升25%)、磷(提升25%)及有機質(提升48%)成分,有助於提升蚯蚓之生長,有添加菇包增殖率高達830%,沒有添加菇包增殖率不明顯(趨近於無增殖狀態)。(6)總石油碳氫化合物(TPH)在添加米糠及蚯蚓的情況皆有助於提升總石油碳氫化合物之降解率,其中以50%柴油污染土壤下,蚯蚓施放密度為25隻/ kg及有添加米糠,總石油碳氫化合物為最佳,高達77.6%。
In this study, two species of earthworm (Eisenia Andrei and Eudrilus Eugeniae) were added into polluted soil with different diesel pollution concentrations and spent mushroom substrate waste in various ratios. The growth of earthworm and their effective degradation of total petroleum hydrocarbon (TPH) concentration in diesel contaminated soil under different conditions of the earthworm density and the addition of rice bran were investigated. This study is divided into two parts. The first part is a toxicity test under different TPH concentrations, regarding the growth status and mortality of two earthworm species. The second part is the effect of earthworm species and densities on diesel-contaminated soil. Under the mixing ratio of diesel-contaminated soil mixed with spent mushroom substrate waste, the earthworm density and the presence or absence of rice bran, the earthworm growth status and the degradation effect of TPHs were studied. The results showed that: (1) the toxicity test of earthworm to diesel-contaminated soil was between 100 and 250 mg/kg for TPHs. (2) Under different mixing ratios (diesel-contaminated soil: spent mushroom substrate waste, W/W), the survival rates of both E. Andrei and E. Eugeniae were the best at 0% and 50% diesel-contaminated soil, followed by 75% and then 100%. (3) The different densities of earthworm (5-25 worm/kg diesel-contaminated soil), E. Andrei and E. Eugeniae were the best in the group at 5 worm/kg. (4) The growth effect of E. andrei is better with rice bran added (3 g/3 days for 60 days). Compared with and without rice bran, the difference in the growth rate is up to 620%. (5) The organic carbon (48%), nitrogen (25%), phosphorus (25%) and organic matter (48%) in the diesel-contaminated soil could be increased by mixing the spent mushroom substrate waste, which was helpful to improve the growth of earthworm. Comparison of spent mushroom substrate waste was added and not added, the growth rate of earthworm up to 830% was added spent mushroom substrate waste. (6) The diesel-contaminated soil with the addition of rice bran, the growth of earthworm was contributed to the increase in the rate of degradation of TPHs. In the case of 50% diesel-contaminated soil, the earthworm density was 25 worm/kg and the rate of TPH degradation with the addition of rice bran was the best, up to 77.6%.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第1章 緒論 1
1.1 研究背景及動機 1
1.2 研究目的 2
1.3 研究架構 3
第2章 文獻回顧 5
2.1 油品污染對於環境之影響 5
2.1.1 全球及台灣石化燃料使用現況 5
2.1.2 碳氫化合物的特性 7
2.1.3 台灣總石油碳氫化合物污染現況 9
2.1.4 油品污染土壤整治方法 11
2.2 蚯蚓的特性 19
2.3 菇類廢棄物 21
2.4 米糠 22
2.5 蚯蚓轉化柴油污染土壤相關文獻 23
第3章 實驗設備與方法 26
3.1. 實驗材料與設備 26
3.1.1 實驗材料 26
3.1.2 蚯蚓品種 29
3.1.3 實驗藥品 30
3.1.4 實驗設備 31
3.2. 實驗方法與步驟 36
3.2.1 蚯蚓對柴油污染土壤之耐受性試驗 36
3.2.2 蚯蚓品種及密度對於柴油污染土壤之轉化效果 38
3.3. 分析方法 40
3.3.1 土壤元素分析 40
3.3.2 總石油碳氫化合物,TPH (NIEA S703.62B) 40
3.3.3 土壤酸鹼值,pH值(NIEA S410.62C) 41
3.3.4 土壤含水率(NIEA S280.61C) 41
第4章 結果與討論 42
4.1 土壤性質分析 42
4.2 柴油污染土壤轉化前後之有機物官能基(FTIR)分析 44
4.3 柴油污染土壤對蚯蚓之耐受性試驗 45
4.3.1 總石油碳氫化合物濃度對於安卓愛勝蚓(Eisenia andrei)之生長狀況 45
4.3.2 總石油碳氫化合物濃度對於尤金真蚓(Eudrilus Eugenia)之生長狀況 48
4.4 蚯蚓品種及密度對於柴油污染土壤之轉化效果之比較 52
4.4.1 摻配比及無添加米糠對於安卓愛勝蚓(Eisenia andrei) 之生長狀況 52
4.4.2 摻配比及有添加米糠對於安卓愛勝蚓(Eisenia andrei) 之生長狀況 57
4.4.3 摻配比及無添加米糠對於尤金真蚓(Eudrilus eugeniae)之生長狀況 66
4.4.4 摻配比及有添加米糠對於尤金真蚓(Eudrilus eugeniae)之生長狀況 71
4.5 比較有無添加米糠對於蚯蚓之生長狀況 80
4.5.1 有無添加米糠對於安卓愛勝蚓(Eisenia andrei)之生長狀況 80
4.5.2 有無添加米糠對於尤金真蚓(Eudrilus eugeniae) 之生長狀況 84
4.6 總石油碳氫化合物降解效果 88
第5章 結論與建議 89
參考文獻 90
工業技術研究院(2003),土壤中總石油碳氫化合物(TPHs)檢測之研究
土壤及地下水污染整治基金管理委員會(2020),台灣土地污染公告管制場址
行政院環境保護署(2013),土壤中總石油碳氫化合物檢測方法-氣相層析儀/火焰離子化偵測器法
行政院農業委員會農業試驗(2013),土壤有機質測定方法-燃燒/紅外線測定法
行政院環境保護署(2009),土壤酸鹼值(pH值)測定方法-電極法
王新傳(1980),鮑氏土壤機械分析法,行政院農業委員會機構典藏系統
https://www.ls-energy.hk/chi/conventional-fuels-oil.html
行政院農業委員會(2012),肥料檢驗項目及檢驗方法
事業廢棄物申報及管理資訊系統(2015),農業相關廢棄物申報量
陳誼芩(2008),小蚯蚓改變大世界,台灣環境資訊協會環境資訊中心
經濟部能源局(2020),能源統計https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=3010
蔡昀達(2020),空氣注入法整治技術及案例介紹,中興工程顧問股份有限公司
賴亦德(2018),台灣常見蚯蚓、蛭類圖鑑,遠足文化
蕭宏杰(2020),熱脫附處理技術應用於受有機物污染場址整治介紹,中興工程顧問股份有限公司
捷思環能有限公司(2017),焚化廠之戴奧辛控制技術
http://www.jsene.com/taipei_epb/dioxin/Default2.aspx
A. Cachada, C. Coelho, A. Gavin, A.C. Dias, C. Patinha, A.P. Reis, E. Ferreira da Silva, A.C. Duarte, R. Pereira, 2018, Availability of polycyclic aromatic hydrocarbons to earthworms in urban soils and its implications for risk assessment, Chemosphere, vol. 191, pp. 196-203
A. Dobermann, and T. Fairhurst, 2002, Rice straw management, Better Crops International, vol. 16, no. 1, pp. 7-11
A. Horel, and S. Schiewer, 2014, Influence of inocula with prior hydrocarbon exposure on biodegradation rates of diesel, synthetic diesel, and fish-biodiesel in soil, Chemosphere, vol. 109, pp. 150-156
A. Ogundare, M. Liasu, and A. Ogundola, 2018, Effects of Soil Supplementation with Organic Fertilization from Earthworm Casts and Inorganic Fertilization from NPK on Growth, Development and Yield of Pepper (Capsicum annuum L.) Plants, Science and Education, vol. 6, no. 1, pp. 6-14
A. Papafilippaki, N. Paranychianakis, and N. P. Nikolaidis, 2015, Effects of soil type and municipal solid waste compost as soil amendment on Cichorium spinosum (spiny chicory) growth, Scientia Horticulturae, vol. 195, pp. 195-205
A. Tiunov, T. Dobrovolśkaya, and L. Polyanskaya, 1997, Earthworm burrow walls, Microbiology, vol. 6, no. 3, pp. 349-353
B. Doube, P. Williams, and P. Willmott, 1997 The influence of two species of earthworm (Aporrectodea trapezoides and Aporrectoedea rosea) on the growth of wheat, barley and faba beans in three soil types in the greenhouse, Soil Biology and Biochemistry, vol. 29, no. 3-4, pp. 503-509
B. Gadde, S. Bonnet, C. Menke, and S. Garivait, 2009, Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines, Environmental Pollution, vol. 157, no. 5, pp. 1554-1558
B. Hernández-Castellanos, A. Ortíz-Ceballos, S. Martínez-Hernández, J. Noa-Carrazana, M. Luna-Guido, L. Dendooven, and S. Contreras-Ramos, 2013, Removal of benzo (a) pyrene from soil using an endogeic earthworm Pontoscolex corethrurus, Applied soil ecology, vol. 70, pp. 62-69
B. Jenkins, J. Mehlschau, R. Williams, C. Solomon, J. Balmes, M. Kleinman, and N. Smith, 2003, Rice straw smoke generation system for controlled human inhalation exposures, Aerosol Science & Technology, vol. 37, no. 5, pp. 437-454
B. M. Doube, O. Schmidt, K. Killham, and R. Correll, 1997, Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study, Soil Biology and Biochemistry, vol. 29, no. 3-4, pp. 569-575
C. Edwards, 1998, Soil and Wat er Conservation Society, Internat iona St. Lucie Press, Ankeny, Iow a
C. Fragoso, J. Kanyonyo, A. Moreno, B. K. Senapati, E. Blanchart, and C. Rodriguez, 1999, A survey of tropical earthworms: taxonomy, biogeography and environmental plasticity, Earthworm management in tropical agroecosystems, pp. 1-26
D. Aljuboury, P. Palaniandy, H. Abdul Aziz, and S. Feroz, 2017, Treatment of petroleum wastewater by conventional and new technologies-A review, Global NEST Journal, vol. 19, pp. 439-452
E. B. Kujawinski, M. C. Kido Soule, D. L. Valentine, A. K. Boysen, K. Longnecker, and M. C. Redmond, 2011, Fate of dispersants associated with the Deepwater Horizon oil spill, Environmental science & technology, vol. 45, no. 4, pp. 1298-1306
EPA, 2001, A Citizen’s Guide to Soil Chemical Oxidation, Office of Solid Waste and Emergency Response, 542-F-01-013
EPA, 2001, A Citizen’s Guide to Phytoremediation, Office of Solid Waste and Emergency Response, 542-F-01-002
EPA, 2001, A Citizen’s Guide to Soil Washing, United States Environmental Protection Agency, 542-F-01-008, 2001
EPA, 1994, How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites , United States Environmental Protection Agency, 510-B-94-003
E. R. Oviedo-Ocaña, L. F. Marmolejo-Rebellon, and P. Torres-Lozada, 2017, Avances en investigación sobre el compostaje de biorresiduos en municipios menores de países en desarrollo. Lecciones desde Colombia, Ingeniería, investigación y tecnología, vol. 18, no. 1, pp. 31-42
F. Cherubini, 2010, The biorefinery concept: using biomass instead of oil for producing energy and chemicals, Energy conversion and management, vol. 51, no. 7, pp. 1412-1421
Google Map, 2020
G. R. Karsten, and H. L. Drake, 1995, Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils, Applied and environmental microbiology, vol. 61, no. 3, pp. 1039-1044
H. A. A. Khan, S. A. Shad, and W. Akram, 2013, Resistance to new chemical insecticides in the house fly, Musca domestica L., from dairies in Punjab, Pakistan, Parasitology research, vol. 112, no. 5, pp. 2049-2054
H. Asgharnia, A. J. Jafari, R. R. Kalantary, S. Nasseri, A. Mahvi, K. Yaghmaeian, A. Esrafili, and Y. D. Shahamat, 2014, Influence of bioaugmentation on biodegradation of phenanthrene-contaminated soil by earthworm in lab scale, Journal of Environmental Health Science and Engineering, vol. 12, no. 1, pp. 150
H. L. Drake, and M. A. Horn, 2007, As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes, Annu. Rev. Microbiol., vol. 61, pp. 169-189
I. C. Ossai, A. Ahmed, A. Hassan, and F. S. Hamid, 2020, Remediation of soil and water contaminated with petroleum hydrocarbon: A review, Environmental Technology & Innovation, vol. 17, pp. 100526
IEA, 2020, Oil Information 2019, International Energy Agency https://www.iea.org/reports/oil-information-2019
J. D. Hamilton, and J. C. Wu, 2014, Risk premia in crude oil futures prices, Journal of International Money and Finance, vol. 42, pp. 9-37
J. E. Satchell, 1967, Lumbricidae, Soil biology
J. E. Vidonish, K. Zygourakis, C. A. Masiello, G. Sabadell, and P. J. Alvarez, 2016, Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation, Engineering, vol. 2, no. 4, pp. 426-437
J. L. Gomez-Eyles, T. Sizmur, C. D. Collins, and M. E. Hodson, 2011, Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements, Environmental Pollution, vol. 159, no. 2, pp. 616-622
K. Birkhofer, T. M. Bezemer, J. Bloem, M. Bonkowski, S. Christensen, D. Dubois, F. Ekelund, A. Fließbach, L. Gunst, and K. Hedlund, 2008, Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity, Soil Biology and Biochemistry, vol. 40, no. 9, pp. 2297-2308
K. L. Njoku, M. O. Akinola, and C. C. Anigbogu, 2016, Vermiremediation of soils contaminated with mixture of petroleum products using Eisenia fetida, Journal of Applied Sciences and Environmental Management, vol. 20, no. 3, pp. 771-779
K. Ramadass, M. Megharaj, K. Venkateswarlu, and R. Naidu, 2015, Ecological implications of motor oil pollution: earthworm survival and soil health, Soil Biology and Biochemistry, vol. 85, pp. 72-81
K. Sharma and V. Garg, 2018, Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.), Bioresource technology, vol. 250, pp. 708-715
K. Singh and S. Chandra, 2014, Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review, Pakistan Journal of Biological Sciences: Pjbs, vol. 17, no. 1, pp. 1-8
L. M. Alonso, D. Kleiner, and E. Ortega, 2008, Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates, Mycorrhiza, vol. 18, no. 4, pp. 197-204
L. Martinkosky, J. Barkley, G. Sabadell, H. Gough, and S. Davidson, 2017, Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons, Science of The Total Environment, vol. 580, pp. 734-743
L. Vlaev, P. Petkov, A. Dimitrov, and S. Genieva, 2011, Cleanup of water polluted with crude oil or diesel fuel using rice husks ash, Journal of the Taiwan Institute of Chemical Engineers, vol. 42, no. 6, pp. 957-964
L. Zhang, C. Yan, Q. Guo, J. Zhang, and J. Ruiz-Menjivar, 2018, The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization, International Journal of low-Carbon technologies, vol. 13, no. 4, pp. 338-352
M. B. Bellettini, F. A. Fiorda, H. A. Maieves, G. L. Teixeira, S. Ávila, P. S. Hornung, A. M. Júnior, and R. H. Ribani, 2019, Factors affecting mushroom Pleurotus spp, Saudi Journal of Biological Sciences, vol. 26, no. 4, pp. 633-646
M. B. Bouché, 1972, Lombriciens de France: écologie et systématique (no. 2). Institut national de la recherche agronomique Paris
M. F. Imron, S. B. Kurniawan, N. I. Ismail, and S. R. S. Abdullah, 2020, Future challenges in diesel biodegradation by bacteria isolates: A review, Journal of Cleaner Production, vol. 251, pp. 119716
M. Hassanshahian, 2014, Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance), Marine pollution bulletin, vol. 86, no. 1-2, pp. 361-366
M. P. Maila, and T. E. Cloete, 2004, Bioremediation of petroleum hydrocarbons through landfarming: Are simplicity and cost-effectiveness the only advantages?, Reviews in Environmental science and bio/Technology, vol. 3, no. 4, pp. 349-360
M. Schaefer, and F. Juliane, 2007, The influence of earthworms and organic additives on the biodegradation of oil contaminated soil, Applied soil ecology, vol. 36, no. 1, pp. 53-62
M. Tejada, I. Gómez, and M. del Toro, 2011, Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology, Ecotoxicology and environmental safety, vol. 74, no. 7, pp. 2075-2081
N. Das, and P. Chandran, 2011, Microbial degradation of petroleum hydrocarbon contaminants: an overview, Biotechnology research international, vol. 2011
N.R. Grba, S. Sokolovic, Blackmore, Remediation of the polluted soil on the nis-rns locality, Annals of The Faculty of Engineering Hunedoara, iss 1584-2673
N. T. K. Oanh, B. T. Ly, D. Tipayarom, B. R. Manandhar, P. Prapat, C. D. Simpson, and L.-J. S. Liu, 2011, Characterization of particulate matter emission from open burning of rice straw, Atmospheric Environment, vol. 45, no. 2, pp. 493-502
O. A. Ekperusi, and I. F. Aigbodion, 2015, Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae, SpringerPlus, vol. 4, no. 1, pp. 1-13
P. J. Bohlen, R. W. Parmelee, and J. M. Blair, 2004, Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales, Earthworm ecology, pp. 161-180
R. Tripathi, A. V. Kumar, S. Manikandan, S. Bhalke, T. Mahadevan, and V. Puranik, 2004, Vertical distribution of atmospheric trace metals and their sources at Mumbai, India, Atmospheric Environment, vol. 38, no. 1, pp. 135-146.
S. Chachina, N. Voronkova, and O. Baklanova, 2016, Biological remediation of the petroleum and diesel contaminated soil with earthworms Eisenia fetida, Procedia Engineering, vol. 152, pp. 122-133
S. Chachina, N. Voronkova, and O. Baklanova, 2015, Biological remediation of the engine lubricant oil-contaminated soil with three kinds of earthworms, Eisenia fetida, Eisenia andrei, Dendrobena veneta, and a mixture of microorganisms, Procedia Engineering, vol. 113, pp. 113-123
S.-Y. Wang, Y.-C. Kuo, A. Hong, Y.-M. Chang, and C.-M. Kao, 2016, Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system, Chemosphere, vol. 164, pp. 558-567
S. Needham, R. Worden, and D. Mcilroy, 2004, Animal-sediment interactions: the effect of ingestion and excretion by worms on mineralogy
Soil Texture Calculator, Natural Resources Conservation Service Soils, USDA
T. Natal‐da‐Luz, I. Lee, R. A. Verweij, P. V. Morais, M. J. Van Velzen, J. P. Sousa, and C. A. Van Gestel, 2012, Influence of earthworm activity on microbial communities related with the degradation of persistent pollutants, Environmental toxicology and chemistry, vol. 31, no. 4, pp. 794-803
U. S. E. P. A. O. o. S. Waste and E. Response, 2002, Arsenic Treatment Technologies for Soil, Waste, and Water. DIANE Publishing
USDA, 2020, Soil Texture Calculator, United States Department of Agriculture Natural Resources Conservation Service Soils
X. Wang, X. Wang, M. Liu, Y. Bu, J. Zhang, J. Chen, and J. Zhao, 2015, Adsorption–synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials, Marine pollution bulletin, vol. 92, no. 1-2, pp. 195-200
Y. Shan, S. Johnson-Beebout, and R. Buresh, 2008, Crop residue management for lowland rice-based cropping systems in Asia, Advances in agronomy, vol. 98, pp. 117-199
Y. Suzuki, T. Matsubara, and M. Hoshino, 2003, Breakdown of mineral grains by earthworms and beetle larvae, Geoderma, vol. 112, no. 1-2, pp. 131-142
Z. A. Hickman, and B. J. Reid, 2008, The co-application of earthworms (Dendrobaena veneta) and compost to increase hydrocarbon losses from diesel contaminated soils, Environment international, vol. 34, no. 7, pp. 1016-1022
Z. Malik, and S. Ahmed, 2012, Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium, African Journal of Biotechnology, vol. 11, no. 3, pp. 650-658
Z. Shi, Z. Tang, and C. Wang, 2019, Effect of phenanthrene on the physicochemical properties of earthworm casts in soil, Ecotoxicology and environmental safety, vol. 168, pp. 348-355
Z. Liu, A. Xu, and B. Long, 2011, Energy from combustion of rice straw: status and challenges to China, Energy and Power Engineering, vol. 3, no. 03, pp. 325

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top