跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張芷寧
研究生(外文):CHANG,CHIH-NING
論文名稱:Nylon 66/PAN奈米纖維鋰電池隔離膜的製備與性質研究
論文名稱(外文):Fabrication and Characterization of Nylon 66/PAN Nanofibrous Film as Separator of Lithium-ion Battery
指導教授:粘譽薰
指導教授(外文):NIEN,YU-HSUN
口試委員:吳知易何志松
口試委員(外文):WU,TZI-YIHO,CHIH-SUNG
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:97
中文關鍵詞:靜電紡絲隔離膜鋰電池尼龍 66聚丙烯腈
外文關鍵詞:ElectrospunSeparatorLithium-ion batteryNylon 66Polyacrylonitrile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來攜帶式電子設備蓬勃發展,鋰電池的安全性也越來越受到重視。在鋰電池中對於安全性要求最高的組件即為隔離膜,其主要功能為隔離正極與負極,使其不會接觸,並防止短路的狀況發生。因此在隔離膜安全性提高的同時,又不影響電化學反應的狀況下,新型隔離膜成為本研究主要目標。
本研究主要為透過採用不同比例之Nylon 66/PAN利用靜電紡絲法製備奈米纖維並研究其性質,且與市售PP隔離膜做比較。將製備完成的隔離膜進行檢測,試樣利用掃描式電子顯微鏡(SEM)檢測其表面型態,透過熱重分析儀(TGA),檢測其熱穩定性,透過萬能拉伸試驗機檢測其機械性質。另外再利用液體吸收法、熱收縮測試與充放電測試來檢測隔離膜的孔隙度、熱尺寸安定性與電化學性能。
實驗結果發現添加PAN可使孔隙度達到85%,明顯高於市售PP隔離膜的41%。在收縮率測試中也無明顯之收縮,與市售隔離膜相比熱尺寸安定性更高。同時,使用最佳性質之試樣作為隔離膜的Li / LiFePO 4鋰電池,在0.1C下20次循環後,電容量可保持在140mA h/g,且庫倫效率維持在99%,表現出優異的充放電效率和循環壽命。因此以Nylon 66/ PAN/Nylon 66電紡絲所製備的隔離膜顯示出比市售隔離膜具有更好的安全性及性能。

In recent years, portable electronic devices have flourished, and the safety of lithium batteries has received increasing attention. The most demanding component in lithium batteries is the separator. The main function is to isolate the positive and negative electrodes from contact and prevent short-circuit conditions. Therefore, under the condition that the safety of the separator is improved without affecting the electrochemical reaction, the new separator has become the main target of this research.
In this study, nanofibers were prepared by electrospinning using different ratios of Nylon 66/PAN and their properties were studied and compared with commercially available PP separators. The prepared separator is tested, and the surface shape is detected by a SEM, and the thermal stability is detected by a TGA. The mechanical properties were measured by a universal tensile tester. In addition, the liquid absorption method, heat shrinkage test and charge and discharge test are used to detect the porosity, thermal dimensional stability and electrochemical performance of the separator.
The experimental results show that the addition of PAN can make the porosity reach 85%, which is significantly higher than 41% of the commercially available PP separator. There was also no significant shrinkage in the shrinkage test and the thermal dimensional stability was higher compared to commercially available separators. The Li / LiFePO4 lithium battery using the best quality sample as a separator, after 20 cycles at 0.1 C, the capacitance can be maintained at 140 mAh/g, and the coulombic efficiency is maintained at 99%, showing an excellent electrochemistry performance. Therefore, the separator prepared by Nylon 66/PAN/Nylon 66 electrospinning shows better safety and performance than the commercially available separator.

摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Tables viii
List of Figures ix
Explanation of Symbols xii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Development of lithium batteries and secondary batteries 2
1.3 Introduction of secondary lithium battery and separator 4
1.4 Research motivation and purpose 7
Chapter 2 Literature Review 8
2.1 Characteristics of the separator 8
2.2 Separator materials and development 10
2.2.1 Polyolefin microporous membrane 10
2.2.2 Non-woven fabric separator 16
2.2.3 High conductivity polymer electrolyte 18
2.3 Electrospinning technology 19
2.3.1 Electrospinning principle and introduction 19
2.3.2 Electrospinning technology parameters 21
2.3.3 Solution parameters-molecular weight and concentration 21
2.3.4 Processing parameters 23
2.3.5 Ambient parameters 27
2.4 Polymer materials 29
2.4.1Nylon 66 29
2.4.2 Polyacrylonitrile 30
Chapter 3 Experimental 32
3.1 Materials 32
3.2 Instrument 32
3.2.1 Experiment equipment 32
3.2.2 Testing equipment 33
3.3 Experiment process 34
3.4 Preparation of electrospun Nylon/PAN/Nylon nanofibrous membranes 35
3.4.1 Nylon 66 spinning solution preparation 35
3.4.2 PAN spinning solution preparation 35
3.4.3 Electrospinning process 36
3.4.4 Hot pressing procedure 37
3.4.5 Coin cell manufacturing equipment for lithium-ion batteries 38
3.5 Detection analysis 39
3.5.1 SEM surface morphology analysis 39
3.5.2 TGA analysis 41
3.5.3 DSC analysis 41
3.5.4 Mechanical properties 43
3.5.6 Test of porosity 44
3.5.7 Electrochemical measurements 45
Chapter 4 Results and Discussion 46
4.1 Operating parameters on electrospinning 46
4.1.1 Nylon 66 spinning solution concentration and working parameters 46
4.1.2 PAN spinning solution concentration and working parameters 46
4.2 Optimum hot pressing conditions 48
4.2.1 SEM image of the cross section 48
4.3 Separator morphology 52
4.4 Thermal stability 54
4.4.1 TGA analysis 54
4.4.2 DSC analysis 56
4.5 Mechanical properties of NPN separator 57
4.6 Separator heat shrinkage analysis 60
4.7 Separator porosity and electrolyte uptake rate 62
4.8 Battery performance 64
4.8.1 Property of charge and discharge 64
4.8.2 Cycling performance 66
4.8.3 Comparison of commercially available batteries and literature 68
Chapter 5 Conclusions 70
References 71
Appendices 83
[1]C. Daniel, "Materials and processing for lithium-ion batteries," Jom, vol. 60, pp. 43-48, 2008.
[2]K. J. Kim, Y. H. Kim, J. H. Song, Y. N. Jo, J.-S. Kim, and Y.-J. Kim, "Effect of gamma ray irradiation on thermal and electrochemical properties of polyethylene separator for Li ion batteries," Journal of Power Sources, vol. 195, pp. 6075-6080, 2010.
[3]電池中國網. (2017). 鋰電池的發展進程、發展前景與電池應用. Available: https://kknews.cc/zh-tw/tech/k3eplmq.html
[4]TARGRAY. Battery Separator Solutions for Li-ion Applications. Available: https://www.targray.com/li-ion-battery/separators
[5]澄泓研究. (2016). 鋰電池隔膜行業研究:供需預計在2016年底改善. Available: https://read01.com/MedMOJ.html
[6]A. Yan. (2019). 癮科學:鋰離子電池. Available: https://chinese.engadget.com/2009/10/30/on-li-ion-batteries/
[7]林振華.林振富, 充電式鋰離子電池:材料與應用: 全華圖書, 2002.
[8]S. Lower. (2019). Timeline of Battery Development. Available: https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Chem1_(Lower)/16%3A_Electrochemistry/24.07%3A_Timeline_of_Battery_Development
[9](2014). History of Lithium Ion battery. Available: https://www.renobat.eu/historia-de-la-bateria-de-litio-ion
[10]華南投顧. (2018). 鋰電池產業的現況與發展. Available: https://events.entrust.com.tw/news/20181211weekly-397
[11]T. Nagaura and K. Tozawa, "Progress in batteries and solar cells," JEC Press, vol. 9, p. 209, 1990.
[12]林偉凱. (2012). 認識新一代電池材料:鋰金屬. Available: https://www2.itis.org.tw/netreport/NetReport_Detail.aspx?rpno=979528472
[13]MoneyDJ理財網. 二次電池. Available: https://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=1294ad45-2da9-42ca-9568-ebab91f8b631
[14]S. S. Zhang, "A review on the separators of liquid electrolyte Li-ion batteries," Journal of power sources, vol. 164, pp. 351-364, 2007.
[15]CBEA電池中國. (2016). 锂电池隔膜行业研究:供需预计在2016年底改善. Available: http://www.cbea.com/gm/201604/16205.html
[16]H. Qiao and Q. Wei, "Functional nanofibers in lithium-ion batteries," in Functional Nanofibers and their Applications, ed: Elsevier, 2012, pp. 197-208.
[17]M. Yanilmaz, F. Kalaoğlu, and H. Karakas, "Investigation on the effect of process variables on polyurethane nanofibre diameter using a factorial design," Fibres & Textiles in Eastern Europe, pp. 19--21, 2013.
[18]M. Yanılmaz and A. S. Sarac, "A review: effect of conductive polymers on the conductivities of electrospun mats," Textile Research Journal, vol. 84, pp. 1325-1342, 2014.
[19]R. Prasanth, V. Aravindan, and M. Srinivasan, "Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly (methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization," Journal of Power Sources, vol. 202, pp. 299-307, 2012.
[20]P. Arora and Z. Zhang, "Battery separators," Chemical reviews, vol. 104, pp. 4419-4462, 2004.
[21]USABC, "Development of low cost separators for lithium-ion batteries," 2001.
[22]H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries," Energy & Environmental Science, vol. 7, pp. 3857-3886, 2014.
[23](2018). 鋰離子電池隔離膜簡介. Available: https://kknews.cc/zh-tw/news/ggpj3xm.html
[24]蔡. 陳泓任, 陳俊生,曾偉嘉,王柏崴 ,黃柏瑞, "高孔隙聚丙烯微孔膜開發之研究," 龍華科技大學學報第三十八期201+.
[25]X. Huang, "Separator technologies for lithium-ion batteries," Journal of Solid State Electrochemistry, vol. 15, pp. 649-662, 2011.
[26]F. Laman, M. Gee, and J. Denovan, "Impedance studies for separators in rechargeable lithium batteries," Journal of The Electrochemical Society, vol. 140, pp. L51-L53, 1993.
[27]G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, "Characterization of microporous separators for lithium-ion batteries," Journal of power sources, vol. 77, pp. 34-41, 1999.
[28]J. T. Lundquist, C. B. Lundsager, N. I. Palmer, and H. J. Troffkin, "Battery separator," ed: Patents, 1987.
[29]W.-C. Yu and M. W. Geiger, "Shutdown, bilayer battery separator," ed: Patents, 1996.
[30]J. T. Lundquist, C. B. Lundsager, N. I. Palmer, and H. J. Troffkin, "Battery separator," ed: Patents, 1988.
[31]R. W. Callahan, R. W. Call, K. J. Harleson, and T.-H. Yu, "Battery separators with reduced splitting propensity," ed: Patents, 2003.
[32]H. Wang, H. Huang, and S. L. Wunder, "Novel microporous poly (vinylidene fluoride) blend electrolytes for lithium‐ion batteries," Journal of the Electrochemical Society, vol. 147, pp. 2853-2861, 2000.
[33]S. Senyarich and P. Viaud, "Method of forming a separator for alkaline electrolyte secondary electric cell," ed: Patents, 2000.
[34]林采璇, "Silica/Nylon66/PMMA奈米纖維鋰電池隔離膜的製備與性質研究," 碩士, 化學工程與材料工程系, 國立雲林科技大學, 雲林縣, 2017.
[35]A. Pourmohammadi, "Nonwoven materials and joining techniques," in Joining Textiles, ed: Elsevier, 2013, pp. 565-581.
[36]M. Yang and J. Hou, "Membranes in lithium ion batteries," Membranes, vol. 2, pp. 367-383, 2012.
[37]S. Augustin, V. Hennige, G. Hörpel, and C. Hying, "Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries," Desalination, vol. 146, pp. 23-28, 2002.
[38]X. Huang, "Evaluation of a polymethylpentene fiber mat formed directly on an anode as a battery separator," Journal of membrane science, vol. 466, pp. 331-337, 2014.
[39]F. B. Dias, L. Plomp, and J. B. Veldhuis, "Trends in polymer electrolytes for secondary lithium batteries," Journal of Power Sources, vol. 88, pp. 169-191, 2000.
[40]A. M. Stephan, "Review on gel polymer electrolytes for lithium batteries," European polymer journal, vol. 42, pp. 21-42, 2006.
[41]黃元品, "離子液體微胞化之高分子電解質固體研究," 2009 高分子學會年會暨軟性電子國際研討會論文發表, 2009.
[42]賴振皓, "纖維鋰離子電池隔離膜之研究," 碩士, 化學工程與材料工程學系奈米材料碩士班, 中國文化大學, 台北市, 2013.
[43]M. Armand, "Polymer solid electrolytes-an overview," Solid State Ionics, vol. 9, pp. 745-754, 1983.
[44]H.-J. Ha, E.-H. Kil, Y. H. Kwon, J. Y. Kim, C. K. Lee, and S.-Y. Lee, "UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries," Energy & Environmental Science, vol. 5, pp. 6491-6499, 2012.
[45]A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, and M. Watanabe, "High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains," Macromolecules, vol. 32, pp. 1541-1548, 1999.
[46]J. Li and I. M. Khan, "Highly conductive solid polymer electrolytes prepared by blending high molecular weight poly (ethylene oxide), poly (2-or 4-vinylpyridine), and lithium perchlorate," Macromolecules, vol. 26, pp. 4544-4550, 1993.
[47]林月微.方家振. (2015). 鋰離子電池用高分子電解質. Available: https://www.materialsnet.com.tw/DocView.aspx?id=21391
[48]林紀昌, "複合高分子電解質," 碩士, 化學研究所, 國立中央大學, 桃園縣, 2006.
[49]G. Appetecchi, P. Romagnoli, and B. Scrosati, "Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries," Electrochemistry communications, vol. 3, pp. 281-284, 2001.
[50]K.-H. Lee, Y.-G. Lee, J.-K. Park, and D.-Y. Seung, "Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P (AN-co-MMA) copolymer," Solid State Ionics, vol. 133, pp. 257-263, 2000.
[51]B. Kumar and L. G. Scanlon, "Polymer-ceramic composite electrolytes," Journal of power sources, vol. 52, pp. 261-268, 1994.
[52]C. Salas, "4 - Solution electrospinning of nanofibers," in Electrospun Nanofibers, M. Afshari, Ed., ed: Woodhead Publishing, 2017, pp. 73-108.
[53]F. Anton, "Process and apparatus for preparing artificial threads," ed: Patents, 1934.
[54]J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," Journal of electrostatics, vol. 35, pp. 151-160, 1995.
[55]S. Agarwal, A. Greiner, and J. H. Wendorff, "Functional materials by electrospinning of polymers," Progress in Polymer Science, vol. 38, pp. 963-991, 2013.
[56]F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, "A review on electrospinning for membrane fabrication: challenges and applications," Desalination, vol. 356, pp. 15-30, 2015.
[57]B. Ghorani and N. Tucker, "Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology," Food Hydrocolloids, vol. 51, pp. 227-240, 2015.
[58]A. Frenot and I. S. Chronakis, "Polymer nanofibers assembled by electrospinning," Current opinion in colloid & interface science, vol. 8, pp. 64-75, 2003.
[59]N. G. Rim, C. S. Shin, and H. Shin, "Current approaches to electrospun nanofibers for tissue engineering," Biomedical materials, vol. 8, p. 014102, 2013.
[60]J. C. Ge, J. H. Kim, and N. J. Choi, "Electrospun polyurethane/loess powder hybrids and their absorption of volatile organic compounds," Advances in Materials Science and Engineering, vol. 2016, 2016.
[61]D. Li and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?," Advanced materials, vol. 16, pp. 1151-1170, 2004.
[62]A. Baji, Y.-W. Mai, S.-C. Wong, M. Abtahi, and P. Chen, "Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties," Composites science and technology, vol. 70, pp. 703-718, 2010.
[63]A. Moghe and B. Gupta, "Co‐axial electrospinning for nanofiber structures: preparation and applications," Polymer Reviews, vol. 48, pp. 353-377, 2008.
[64]X. Ma, P. Kolla, R. Yang, Z. Wang, Y. Zhao, A. L. Smirnova, et al., "Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators," Electrochimica Acta, vol. 236, pp. 417-423, 2017.
[65]H. Fong, I. Chun, and D. Reneker, "Beaded nanofibers formed during electrospinning," Polymer, vol. 40, pp. 4585-4592, 1999.
[66]O. Yördem, M. Papila, and Y. Z. Menceloğlu, "Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology," Materials & design, vol. 29, pp. 34-44, 2008.
[67]X. Yuan, Y. Zhang, C. Dong, and J. Sheng, "Morphology of ultrafine polysulfone fibers prepared by electrospinning," Polymer International, vol. 53, pp. 1704-1710, 2004.
[68]N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnology advances, vol. 28, pp. 325-347, 2010.
[69]羅怡儂, "製備含ZrO2/TiO2光觸媒奈米纖維及其分解有機物之研究," 碩士, 化學工程與材料工程系, 國立雲林科技大學, 雲林縣, 2017.
[70]C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, "Characterization of gelatin nanofiber prepared from gelatin–formic acid solution," Polymer, vol. 46, pp. 5094-5102, 2005.
[71]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, vol. 43, pp. 4403-4412, 2002.
[72]R. Murugan and S. Ramakrishna, "Design strategies of tissue engineering scaffolds with controlled fiber orientation," Tissue engineering, vol. 13, pp. 1845-1866, 2007.
[73]R. Murugan and S. Ramakrishna, "Nano-featured scaffolds for tissue engineering: a review of spinning methodologies," Tissue engineering, vol. 12, pp. 435-447, 2006.
[74]C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, "Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process," Macromolecules, vol. 37, pp. 573-578, 2004.
[75]C. Mit‐uppatham, M. Nithitanakul, and P. Supaphol, "Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter," Macromolecular Chemistry and Physics, vol. 205, pp. 2327-2338, 2004.
[76]B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons,'' Biomaterials science: an introduction to materials in medicine,'' MRS Bull, vol. 31, p. 59, 2006.
[77]B. Deopura and A. Mukherjee, "Nylon 6 and nylon 66 fibres," in Manufactured Fibre Technology, ed: Springer, 1997, pp. 318-359.
[78]D. Jung, "New methods for producing nylon 6, 6 fibers with enhanced mechanical properties," 2004.
[79]E. Zussman, M. Burman, A. Yarin, R. Khalfin, and Y. Cohen, "Tensile deformation of electrospun nylon‐6, 6 nanofibers," Journal of Polymer Science Part B: Polymer Physics, vol. 44, pp. 1482-1489, 2006.
[80]H. Wang, N. Wang, T. Liu, C. Zhao, X. Luo, L. Zhang, et al., "A heatproof separator for lithium-ion battery based on nylon66 nanofibers," Ionics, vol. 22, pp. 731-734, 2016.
[81]E. S. Wheeler and C. A. Signorino, "Nylon solvent and method of making same," ed: Patents, 1968.
[82](2019). 聚丙烯腈. Available: https://zh.wikipedia.org/wiki/%E8%81%9A%E4%B8%99%E7%83%AF%E8%85%88
[83]唐浩宇. (2019). 聚丙烯腈. Available: https://baike.baidu.com/item/%E8%81%9A%E4%B8%99%E7%83%AF%E8%85%88
[84]G. Zainab, X. Wang, J. Yu, Y. Zhai, A. A. Babar, K. Xiao, et al., "Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries," Materials Chemistry and Physics, vol. 182, pp. 308-314, 2016.
[85]M. Zhao, J. Wang, C. Chong, X. Yu, L. Wang, and Z. Shi, "An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries," Rsc Advances, vol. 5, pp. 101115-101120, 2015.
[86]Targray, "Coin Cell Manufacturing Process," 2018.
[87]G.-J. Janssen, "Information on the FESEM (Field-emission Scanning Electron Microscope) Radboud University Nijmegen ", Virtual Classroom Biology2010.
[88]shodhganga, "Chapter 4 : Instruments for Structural , Optical , Electrical Characterizations 4 . 1 Field Emission Scanning Electron Microscopy ( FE-SEM ) & Electron Dispersion X-Ray Spectroscopy," 2010.
[89]R. C. H. Cik, C. T. Foo, and A. F. O. Nor, "Field Emission Scanning Electron Microscope (FESEM) Facility in BTI."
[90]N. E. Zafeiropoulos, Interface engineering of natural fibre composites for maximum performance: Elsevier, 2011.
[91]W. Qiu, A. Habenschuss, and B. Wunderlich, "The phase structures of nylon 6.6 as studied by temperature-modulated calorimetry and their link to X-ray structure and molecular motion," Polymer, vol. 48, pp. 1641-1650, 2007.
[92]M. Yanilmaz, Y. Lu, J. Zhu, and X. Zhang, "Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries," Journal of Power Sources, vol. 313, pp. 205-212, 2016.
[93]Richtek. (2010). 鋰離子電池及電池電量計介紹. Available: https://www.richtek.com/Design%20Support/Technical%20Document/AN024?sc_lang=zh-TW
[94]X. Wang, B. Ding, G. Sun, M. Wang, and J. Yu, "Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets," Progress in Materials Science, vol. 58, pp. 1173-1243, 2013.
[95]F. T. Traceski, "Assessing industrial capabilities for carbon fiber production," OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION AND TECHNOLOGY …1999.
[96]J. Sharma, X. Zhang, T. Sarker, X. Yan, L. Washburn, H. Qu, et al., "Biocompatible electrospun tactic poly (methyl methacrylate) blend fibers," Polymer, vol. 55, pp. 3261-3269, 2014.
[97]J. Bell, P. Slade, and J. Dumbleton, "Multiple melting in nylon 66," Journal of Polymer Science Part A‐2: Polymer Physics, vol. 6, pp. 1773-1781, 1968.
[98]Y.-J. Kim, H.-S. Kim, C.-H. Doh, S. H. Kim, and S.-M. Lee, "Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries," Journal of Power Sources, vol. 244, pp. 196-206, 2013.
[99]T. Evans, J.-H. Lee, V. Bhat, and S.-H. Lee, "Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries," Journal of Power Sources, vol. 292, pp. 1-6, 2015.
[100]J. H. Lee, J. Manuel, H. Choi, W. H. Park, and J.-H. Ahn, "Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries," Polymer, vol. 68, pp. 335-343, 2015.
[101]A. I. Gopalan, P. Santhosh, K. M. Manesh, J. H. Nho, S. H. Kim, C.-G. Hwang, et al., "Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries," Journal of membrane science, vol. 325, pp. 683-690, 2008.
[102]H.-R. Jung, D.-H. Ju, W.-J. Lee, X. Zhang, and R. Kotek, "Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes," Electrochimica Acta, vol. 54, pp. 3630-3637, 2009.
[103]T.-H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, et al., "Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery," Journal of Power Sources, vol. 181, pp. 155-160, 2008.
[104]S. Zhang, M. Ervin, K. Xu, and T. Jow, "Microporous poly (acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable lithium battery," Electrochimica Acta, vol. 49, pp. 3339-3345, 2004.


電子全文 電子全文(網際網路公開日期:20250630)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊