跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許書珮
研究生(外文):HSU,SHU-PEI
論文名稱:奈米碳管/石墨烯複合材料以氮電漿處理後再濺鍍氧化鋁以改善鋰離子電池之負極材料的初始庫倫效率
論文名稱(外文):Improving Initial Coulombic Efficiency of Anode Materials in Lithium-ion Batteries Using Carbon Nanotube/Graphene Composites Treated by Nitrogen-plasma And Then Sputtered with Alumina
指導教授:林春強林春強引用關係
指導教授(外文):LIN,CHUEN-CHANG
口試委員:林春強胡啟章李元堯吳子和
口試委員(外文):LIN,CHUEN-CHANGHU,CHI-CHANGLI,YUAN-YAOWU,TZU-HO
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:化學氣相沉積奈米碳管/石墨烯複合材料氮電漿處理磁控濺鍍氧化鋁塗層固態電解質介面相初始庫倫效率負極材料鋰離子電池
外文關鍵詞:Chemical vapor depositionCarbon nanotube/graphene compositeNitrogen-plasma treatmentMagnetron sputteringAlumina coatingSEIInitial coulombic efficiencyAnode materialsLithium-ion batteries
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1. 概敘 1
1.2. 研究方向及目標 3
第二章 文獻回顧 5
2.1. 鋰離子電池介紹 5
2.1.1. 鋰離子電池原理 5
2.1.2. 鋰離子電池特色 7
2.1.3. 鋰離子二次電池優缺點 9
2.1.4. 鋰離子電池正極材料 11
2.1.5. 鋰離子電池負極材料 11
2.2. 奈米碳管簡介 12
2.2.1. 奈米碳管製備方法 13
2.3. 石墨烯簡介 16
2.3.1. 石墨烯的製備方法 17
2.4 電漿介紹及應用 19
2.4.1電漿簡介 19
2.4.2電漿源種類 20
2.4.3電漿原理 20
2.5.碳材改質研究概況 22
2.5.1 碳材改質之文獻回顧 22
2.6. 氧化鋁複合材料研究概況 23
2.6.1.氧化鋁陽極材料之文獻回顧 23
2.7濺鍍法介紹及應用 25
2.8 濺鍍的種類 28
2.8.1 磁控濺鍍 28
2.8.2 反應式濺鍍 28
2.8.3 直流濺鍍(DC) 29
2.8.4 射頻濺鍍(RF) 29
第三章 實驗步驟 30
3.1. 實驗簡介 30
3.2. 實驗藥品、儀器及分析設備 31
3.2.1. 實驗藥品 31
3.2.2. 實驗儀器 32
3.2.3. 分析設備 33
3.3. 實驗流程圖 34
3.3.1. 基材前處理 34
3.3.2. CVD成長石墨烯/奈米碳管複合材料 35
3.3.3. 氮電漿改質奈米碳管/石墨烯複合材料 35
3.3.4. RF射頻反應性濺鍍氧化鋁薄膜於氮改質奈米碳管/石墨烯複合材料上 35
3.3.5. 鋰離子電池組裝 36
第四章 結果與討論 38
4.1. 氮摻雜奈米碳管/石墨烯複合材料披覆氧化鋁後之材料分析 38
4.1.1. XPS分析氧化鋁在氮摻雜奈米碳管/石墨烯複合材料之元素組態 38
4.1.2. 氧化鋁/氮摻雜奈米碳管/石墨烯複合材料之Raman光譜分析 39
4.1.3. 氧化鋁/氮摻雜奈米碳管/石墨烯複合材料之SEM表面型態分析 40
4.1.4 氧化鋁/氮摻雜奈米碳管/石墨烯複合材料之EDS分析 46
4.1.5 氧化鋁/氮摻雜奈米碳管/石墨烯複合材料之AFM表面粗糙度分析 48
4.2. 氮摻雜奈米碳管/石墨烯複合材料披覆氧化鋁後之電化學分析 53
4.2.1. 氧化鋁/氮摻雜奈米碳管/石墨烯複合材料之電化學性能 53
4.2.2. 氧化鋁/氮摻雜奈米碳管/石墨烯複合材料之循環伏安法 59
4.2.3 石墨烯、奈米碳管以及泡沫鎳複合材料之充放電測試 61
4.2.4. 奈米碳管/石墨烯及披覆氧化鋁前(後)/氮摻雜奈米碳管/石墨烯複合材料之充放電測試 63
4.2.5. 披覆氧化鋁前(後)/氮摻雜奈米碳管/石墨烯複合材料之交流阻抗測試 68
4.2.6.氧化鋁/氮摻雜奈米碳管/石墨烯複合材料之速率性能測試 69
4.2.7. 披覆氧化鋁前(後)/氮摻雜奈米碳管/石墨烯複合材料之全電池充放電測試 70
第五章 結論 72
參考文獻 73


1.Z.-S. Wu, W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011. 5(7): p. 5463-5471.
2.de las Casas, C. and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 2012. 208: p. 74-85.
3.楊長榮, 二次鋰電池有機電解液之碳極表面鈍性膜研究. 清華大學化學工程研究所碩士論文, 1996.
4.W. Wang, S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, and C.S. Ozkan, Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy, 2013. 2(2): p. 294-303.
5.E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, and I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Letters, 2008. 8(8): p. 2277-2282.
6.X. F. Li, J. Liu, Y. Zhang, Y. L. Li, H. Liu, X. B. Meng, J. L. Yang, D. S. Geng, D. N. Wang, R. Li, and X. L. Sun, High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. Journal of Power Sources, 2012. 197: p. 238-245.
7.D. Li, D. Q. Shi, Z. X. Chen, H. K. Liu, D. Z. Jia and Z. P. Guo, Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Advances, 2013. 3: p. 5003-5008.
8.L. F. Lai, J. X. Zhu, Z. G. Li, D. Y. W. Yu, S. Jiang, X. Y. Cai, Q. Y. Yan, Y. M. Lam, Z. X. Shen, and J. Y. Lin, Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy, 2014. 3: p. 134-143.
9.R. F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou, and F. S. Xiao, A sandwich N-doped graphene/Co3O4 hybrid: an efficient catalyst for selective oxidation of olefins and alcohols. J. Mater. Chem. A, 2013 1: p. 9037-9045.
10.H. Xu, L. Ma, and Z. Jin, Journal of Energy Chemistry, 27 (2018) 146.
11.Congcong Ma, Xiaohong Shao and Dapeng Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem., 2012. 22: p. 8911-8915.
12.N. A. Kaskhedikar and J. Maier, Lithium Storage in Carbon Nanostructures. Adv. Mater., 2009. 21: p. 2664–2680.
13.郭炳焜, 徐徽, 王先友, and 肖立新, 鋰離子電池. 中南大學出版社, 2002.
14.黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術. 五南圖書出版社, 2010.
15.劉峰其, Nonlinear Lithium Battery Models for Battery Charging and Discharging. 國立中央大學, 2010.
16.吳玉祥, 吳俊霖, and 張晏銘, 鋰離子二次電池負極材料表面改質之發展與改良. 中華技術學院學報, 2004. 31: p. 247-262.
17.S. Iijima, Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
18.A. K.-T. Lau, and D. Hui, The revolutionary creation of new advanced materials—carbon nanotube composites. Composites Part B: Engineering, 2002. 33(4): p. 263-277.
19.T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 1995. 243(1): p. 49-54.
20.H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan, and D. H. Lowndes, Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition. Chemical Physics Letters, 2003. 374(3): p. 222-228.
21.T. W. Ebbesen, and P. M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358(6383): p. 220-222.
22.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes. Science, 1996. 273(5274): p. 483-487.
23.M. Endo, Grow carbon fibers in vaper phase. Chemtech, 1988. 18: p. 568-576.
24.M. José-Yacamán, M. Miki-Yoshida, L. Rendón, and J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters, 1993. 62: p. 657-659.
25.A. K. Geim, and K. S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
26.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
27.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-286.
28.S. J. Chae, F. Güneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Le, Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials, 2009. 21: p. 2328–2333.
29.張家豪,電漿源原理與應用之介紹,物理雙月刊, 2006. 28(2): p. 440-452.
30.郭有斌,國立成功大學,微中空陰極陣列常壓電漿與低溫成長碳奈米結構,2003.
31.Z. Zhou, X. Gao, J. Yan, D. Song, and M. Morinaga, Enhanced Lithium Absorption in Single-Walled Carbon Nanotubes by Boron Doping. J. Phys. Chem. B, 2004. 108: p. 9023-9026.
32.H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao and G. Cui, Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem., 2011. 21: p. 5430-5434.
33.H. Zhang, K. Liu, Y. Liu, Z. Lang, W. He, L. Ma, J. Man, G. Jia, J. Cui, and J. Sun, Observably improving initial coulombic efficiency of C/SiOx anode using -C-O-PO3Li2 groups in lithium ion batteries. Journal of Power Sources, 447 (2020) 227400.
34.J. Cui, J. Yang, J. Man, S. Li, J. Yin, L. Ma, W. He, J. Sun, and J. Hu, Porous Al/Al2O3 two-phase nanonetwork to improve electrochemical properties of porous C/SiO2 as anode for Li-ion batteries. Electrochimica Acta, 300 (2019) 470-481.
35.Y. He, X. Yu, Y. Wang, H. Li, and X. Huang, Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency. Advanced materials, 23 (2011) 4938-4941.
36.Q. H. Wu, B. Qu, J. Tang, C. Wang, D. Wang, Y. Li, and J.-G. Ren, An Alumina-Coated Fe3O4-Reduced Graphene Oxide Composite Electrode as a Stable Anode for Lithium-ion Battery. Electrochimica Acta 156 (2015) 147-153.
37.L. Wang, L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li, and H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 10 (2018) 16-23.
38.M. Yoshio, H.Y. Wang, K. Fukuda, Y. Hara, and Y. Adachi, Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material, J. Electrochem. Soc., 147, 2000, pp. 1245–1250.
39.H.-Y. Lee, and S.-M. Lee, Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries, J. Power Sources, 112, 2002, pp. 649–654.
40.M. N. Obrovac, and L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochem. Solid-State Lett, 7, 2004, p. A93.
41.M. Wachtler, J. O. Besenhard, and M. Winter, Tin and tin-based intermetallics as new anode materials for lithium-ion cells, J. Power Sources, 94, 2001, p. 189.
42.K. Wang, X. He, J. Ren, L. Wang, C. Jiang, and C. Wan., Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides, Electrochim. Acta, 52, 2006, p. 1221.
43.Y. Hmon, T. Brousse, F. Jousse, P. Topart, P. Buvat, and D. M. Schleich, J. Power Sources, 97–98, 2001, p. 185.
44.鄭博元,射頻磁控濺鍍法製備鋰離子二次電池用鋰-錳氧化物薄膜電極,國立雲林科技大學化學工程研究所,2006.
45.柯賢文 編著,表面與薄膜處理技術,全華科技圖書股份有限公司,2005.
46.C. C. Lin and C. L. Yang, Carbon Nanotubes Grown on Nanoporous Alumina Templates/Aluminum Foil for Electrodes of Aluminum Electrolytic Capacitors, Journal of The Electrochemical Society, 157(2) (2010) A237.
47.D. S. Kim, Y. E. Kim, and H. Kim, Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries, Journal of Power Sources, 422, 2019, p18-24.
48.S. Kumari and A. Khare, Optical and structural characterization of pulsed laser deposited ruby thin films for temperature sensing application, Applied Surface Science, 2013, 265, 180-186.
49.Li, X., D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 2011. 13(8): p. 822-825.
50.T. Feng, Y. Xu, Z. Zhengwei, X. Du, X. Sun, L. Xiong, R. Rodriguez, and R. Holze, Low-Cost Al2O3 Coating Layer As a Preformed SEI on Natural Graphite Powder To Improve Coulombic Efficiency and High-Rate Cycling Stability of Lithium-Ion Batteries, ACS, 2016, p 6512–6519.
51.S. Zhu, J. Liu, and J. Sun, Precise growth of Al2O3/SnO2/CNTs composites by a two-step atomic layer deposition and their application as an improved anode for lithium ion batteries Electrochimica Acta, Vol. 319, (2019), p.490-498.
52.C. C. LIN, and P. L. CHANG, Synthesis of Carbon Nanotube/Graphene Composites on Ni Foam without Additional Catalysts by CVD and their Nitrogen-Plasma Treatment or Anode Materials in Lithium-ion BatteriesElectrochemistry, 86(3), 109–115 (2018).
53.C. C. LIN, R. C. Wei, Nitrogen-plasma treatment of carbon nanotubes and chemical liquid phase deposition of alumina for electrodes of aluminum electrolytic capacitors, Journal of The Electrochemical Society, 2012, Vol. 159, No. 6,pp. A664-A668.
54.Pallavi Verma, Pascal Maire and Petr Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta. 2010. 55: p.6332–6341.
55.Q. Pan, P. Zuo, T. Mu, C. Du, X. Cheng, Y. Ma, Y. Gao, G. Yin, Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. Journal of Power Sources. 2017. 347:p.170-177.
56.W. Zhang, Y. Fu, X. Wang, Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogendoped graphene: A high-performance anode material for lithium-ion batteries. Applied Surface Science, 2018, 439:p. 447–455.

電子全文 電子全文(網際網路公開日期:20250630)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top