跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡丞毅
研究生(外文):Hu,Cheng-Yi
論文名稱:奈米碳管/石墨烯複合材料以氮電漿處理後再濺鍍二氧化錫以作為鋰離子電池之負極材料
論文名稱(外文):Carbon Nanotubes/Graphene Composites Treated by Nitrogen-Plasma And Then Sputtered with Tin Dioxide for Anode Materials of Lithium-ion Batteries
指導教授:林春強林春強引用關係
指導教授(外文):Lin,CHUEN-CHANG
口試委員:胡啟章李元堯吳子和林春強
口試委員(外文):Hu,CHI-CHANGLi,YUAN-YAOWu,TZU-HOLin,CHUEN-CHANG
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:101
中文關鍵詞:化學氣相沉積奈米碳管/石墨烯複合材料氮電漿處理磁控濺鍍二氧化錫負極材料鋰離子電池
外文關鍵詞:Chemical vapor depositionCarbon nanotube/graphene compositeNitrogen-plasma treatmentMagnetron sputteringTin dioxideAnode materialsLithium-ion batteries
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2研究方向與目標 6
第二章 文獻回顧及理論 8
2.1 鋰二次電池 8
2.2 鋰電池原理 9
2.3鋰離子電池的特色 11
2.4 奈米碳管的簡介 11
2.4.1. 奈米碳管的構造 12
2.4.2. 奈米碳管製備方式 13
2.5石墨烯的簡介 16
2.5.1石墨烯的製備方法 16
2.6氮摻雜碳材介紹 20
2.7濺鍍法介紹及應用 21
2.8 濺鍍的種類 23
2.8.1 直流濺鍍(DC) 23
2.8.2 射頻濺鍍(RF) 24
2.8.3 磁控濺鍍 24
2.8.4 反應式濺鍍 24
2.9 二氧化錫之文獻探討 26
2.9.1 二氧化錫/石墨烯/奈米碳管之文獻探討 26
2.9.2 二氧化錫/氮摻雜石墨烯/奈米碳管之文獻探討 28
第三章 實驗步驟與研究方法 30
3.1 實驗流程圖 30
3.2實驗藥品與儀器 31
3.2.1實驗藥品 31
3.2.2實驗設備 31
3.2.3實驗檢測儀器 32
3.3實驗步驟 33
3.3.1. 基材前處理 33
3.3.2. CVD成長石墨烯/奈米碳管複合材料 33
3.3.3. 氮電漿改質奈米碳管/石墨烯複合材料 34
3.3.4. RF射頻反應性濺鍍二氧化錫薄膜於氮改質奈米碳管/石墨烯複合材料上 34
3.4鋰電池組裝 36
第四章 結果與討論 38
4.1奈米碳管/石墨烯複材氮摻雜特性分析 38
4.1.1 奈米碳管/石墨烯複合材料SEM表面型態分析 38
4.1.2 拉曼分析 39
4.1.3 奈米碳管/石墨烯複材之電化學分析 41
4.2濺鍍二氧化錫於氮摻雜之奈米碳管/石墨烯複材特性分析 44
4.2.1 SEM表面型態分析 44
4.2.2 XPS分析二氧化錫氮摻雜奈米碳管/石墨烯複合材料之元素組態 50
4.2.3 XPS分析鋰化後複材 51
4.2.4 Raman光譜分析二氧化錫材料 52
4.2.5薄膜表面之AFM分析 53
4.3濺鍍二氧化錫於氮摻雜之奈米碳管/石墨烯複材之電化學分析 61
4.3.1二氧化錫氮摻雜奈米碳管/石墨烯複合材料之充放電分析 61
4.3.2二氧化錫氮摻雜奈米碳管/石墨烯複合材料之庫倫效率測試 69
4.3.3二氧化錫氮摻雜奈米碳管/石墨烯複合材料之速率性能測試 70
4.3.4二氧化錫氮摻雜奈米碳管/石墨烯複合材料之交流阻抗測試 71
4.3.5二氧化錫氮摻雜奈米碳管/石墨烯複合材料之循環伏安法測試 73
4.3.6二氧化錫/氮摻雜奈米碳管/石墨烯複合材料之全電池測試 74
第五章 結論 75
參考文獻 76


1.M. Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering, 33, 2001, 109
2.陳立業, 奈米結構氫氧化鎳之參雜改性及其對鎳氫電池性能的改善及機制研究(3/3), 2005
3.Z. Zheng, W. Shen, Z. Tang,化學世界., 2004, 270
4.J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries,Nature, 414 , 2001, 359-367.
5.金融家月刊,6月號, 2012
6.台灣立凱電能科技股份有限公司
7.趙信豪,“鋰電池三元系正極材料之添加劑製備及電性能探討”,國立中央大學化學學系研究所, 2012
8.F.Liu,P.P.Mukherjee,2 - Materials for positive electrodes in rechargeable lithium-ion batteries,Rechargeable Lithium Batteries,2015,21-39
9.S. Y .Chung, J. T .Bloking, Y. M .Chiang., Electronically conductive phospho-olivines as lithium storage electrodes,Nature Materials, 1, 2002, pp. 123-128.
10.X.Liu , X.Y. Wua,B.Chang,K.X.Wang, Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms,EnergyStorageMaterials,30,(2020),146–169.
11.W .Wang., S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, and C.S. Ozkan,Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors,Nano Energy, 2013. 2(2): p. 294-303.
12.E .Yoo., J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, and I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries,Nano Letters, 2008. 8(8): p. 2277-2282.
13.D. Song, S. Wang, R. Liu, J. Jiang, Y. Jiang, S. Huang, Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material,Applied Surface Science, 478 (2019) 290.
14.X. F. Li, J. Liu, Y. Zhang, Y. L. Li, H. Liu, X. B. Meng, J. L. Yang, D. S. Geng, D. N. Wang, R. Li, and X. L. Sun,High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application,Journal of Power Sources, 197 (2012) 238.
15.D. Li, D. Q. Shi, Z. X. Chen, H. K. Liu, D. Z. Jia, and Z. P. Guo, Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries ,RSC Advances, 3 (2013) 5003.
16.L. Lai, J. X. Zhu, Z. G. Li, D. Y. W. Yu, S. Jiang, X. Y. Cai, Q. Y. Yan, Y. M. Lam, Z. X. Shen, and J. Y. Lin, Nano Energy, 3 (2014) 134.
17.R. F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou, and F. S. Xiao, A sandwich N-doped graphene/Co3O4 hybrid: an efficient catalyst for selective oxidation of olefins and alcohols,J. Mater. Chem. A, 1 (2013) 9037.
18.H. Xu, L. Ma, and Z. Jin, Nitrogen-doped graphene: Synthesis, characterizations and energy applications,Journal of Energy Chemistry, 27 (2018) 146.
19.Congcong Ma, Xiaohong Shao and Dapeng Cao, Nitrogen-doped graphenenanosheets as anode materials for lithium ion batteries: a first-principles study, J. Mater. Chem., 2012. 22: p. 8911-8915.
20.N. A. Kaskhedikar and J. Maier, Lithium Storage in Carbon Nanostructures , Adv. Mater., 2009. 21: p. 2664–2680.
21.B. Diouf, R. Pode, “Potential of lithium-ion batteries in renewable energy”,Renew Energy, 76, 2015, pp. 375–380
22.D. Miranda, C.M. Costa, S. Lanceros-Mendez, Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations, J. Electroanalytical Chemistry, 739, 2015, pp. 97–110
23.Charles de las Casas, Wenzhi Li , A review of application of carbon nanotubes for lithium ion battery anode material,J. Power Sources,208, 2012, pp. 74-85
24.孫清華編譯,可充電電池技術大全,全華科技圖書股份有限公司, 2003
25.M. Wakihara, Y.-Weinheim,“Lithium Ion Batteries Fundamentals and Performance”,1998, Kodansha Ltd., Tokyo (Japan)
26.M. Arakawa, S. Tobishima, Y. Nemoto, M. Ichimura, J. Yamaki,“Lithium electrode cycleability and morphology dependence on current density” ,J. Power Sources, 1993 ,43, pp. 27-35
27.B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries,Energy Environ. Sci. 2 , 2009, pp. 638-654
28.Iijima, S . , Helical microtubules of graphitic carbon,Nature, 354 , 1991, 56
29.Zhu, Y. W., Cheong, F. C., Yu, T., Xu, X. J., Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films,Carbon, 43, 2005, pp.395-400.
30.Hu,C. G., Wang, W. L., Investigation on electrochemical properties of carbon nanotubes,Diamond and Related Materials, 12 , 2003, 1295-1299
31.Charlier, J. C., Issi, J. P., Electronic structure and quantum transport in carbon nanotubes ,Appl. Phys. A., 67, 1998, 79.
32.Haus, M. D., Dresselhaus, G., Eklund, P., Saito, R. Carbon nanotubes. Physics World, 33, 1998.
33.Mintmire, J. W., and White, C. T., First-principles band structures of armchair nanotubes, Appl. Phys. A, 67, 1998, 65
34.Cividanes LS, Simonetti EAN, Moraes MB, Fernandes FW and Thim GP. , Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: A comprehensive review, Polymer Engineering and Science 54(11) , 2013, 2461–2469
35.Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomalnek D, Fischer J E, and Smalley R E, Crystalline Ropes of Metallic Carbon Nanotubes,Science,273, 1996, 483-487
36.T.Guo, P.Nikolaev, R. E .Smalley., Catalytic growth of single-walled manotubes by laser vaporization., Chemical Physics Letters, Vol. 243, 1995, 49-54.
37.Statishkumar, B. C., Govindaraj, A., and Rao, C. N. R., Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ,Chem. Phys. Lett., 307 , 1999, 158-162.
38.S.J. Chae, F. Gunes, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, etal., “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation”, Adv Mater, 21, 2009, pp. 2328-2333.
39.莊鎮宇,“石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”,物理雙月刊33(2) ,145-256
40.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”,Science, 306, 2004, pp. 666-669
41.陳冠銘,“表面修飾石墨烯薄片及其在超級電容器之應用”,國立雲科技大學化學工程研究所,2012
42.Y. A. Wu, A. W. Robertson, F. Schäffel, S. C. Speller, J. H. Warner, “Aligned Rectangular Few-Layer Graphene Domains on Copper Surfaces”,Chem Mater., 23, 2011, pp. 4543-4547.
43.T. F. Chung, T. Shen, H. Cao, L. A. Jauregui, W. Wu, Q. Wu, D. Newell, and Y. P. Chen, Synthetic Graphene Grown By Chemical Vapor Deposition on Copper Foils,International Journal of Modern Physics B, 27(10), 2013, 1341002-1 – 1341002-14.
44.M. G. Rybin, A. S. Pozharov, E. D. Obraztsova, Control of number of graphene layers grown by chemical vapor deposition,Physica Status Solidi C, 11-12, 2010, pp. 2785-2788.
45.D. M. Mattox,The Foundations of Vacuum Coating Technology, William Andrew Publishing, Noyes, 2003.
46.P. R. Somani, S. P. Somani and M. Umeno, Planer nano-graphenes from camphor by CVD, Chem Phys Lett, 430, 2006, pp.56-59.
47.F. T. Si, X. W. Zhang, X. Liu, Z. G. Yin, S. G. Zhang, H. L. Gao, J. J. Dong, Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition, Vacuum, 86, 2012, pp. 1867-1870.
48.G. Nandamuri, S. Roumimov, R. Solanki,Chemical vapor deposition of graphene films,Nanotechnology, 21, 2010, pp. 145604
49.D. Kondo, S. Sato, K. Yagi, N. Harada, M. Sato, M. Nihei, N. Yokoyama, Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes, Appl. Phys. Express, 3, 2010, pp. 025102
50.C.S. Chen, C.K. Hsieh, Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition, Thin Solid Films, 584, 2015, pp. 265-269
51.Y. Zhang, Y. Fu, M. Edwards, K. Jeppson, L. Ye, J. Liu, Chemical vapor deposition grown graphene on Cu-Pt alloys , Materials Letters, 193, 2017, pp. 255-258
52.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R.Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K.Banerjee, L. Colombo, R.S. Ruoff,Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 2009, pp. 1312-1314
53.K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong,Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 2009, pp. 706-710
54.T.Moon,C.Kim,B.Park, Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries, Journal of Power Sources 155 , 2006, pp391–394
55.M. Yoshio, H.Y. Wang, K. Fukuda, Y. Hara, Y. Adachi., “Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material”J. Electrochem. Soc., 147, 2000, pp. 1245–1250
56.H.-Y. Lee, S.-M. Lee., “Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries”,J. Power Sources, 112, 2002, pp. 649–654
57.Z. Zhou, X .Gao, J .Yan, D.Song, and M.Moringaga, Enhanced Lithium Absorption in Single-Walled Carbon Nanotubes by Boron Doping, J Phys Chem B, 108,2004, 9023-9026
58.D.Deng, X.Pan, L.Yu, Y.Cui, Y.Jiang, J.Qi, W.Li, Q.Fu, X.Ma, Q.Xue, G.Sun, and X.Bao, Toward N-Doped Graphene via Solvothermal Synthesis , Chem Mater, 23 , 2011, 1188-1193
59.X.Li, D.Geng, Y.Zhang, X.Meng, R.Li, X.Sun, “Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries”, Electrochem Commun,13, 2011, 822-825
60.H.Wang, C..Zhang, Z.Liu, L.Wang, P.Han, H.Xu, K.Zhang, S.Dong, J.Yao,and G .Cui, “Nitrogen-doped graphene nanosheets with excellent lithium storage properties”, J Mater Chem,21, 2011, 5430-5434
61.A.L.Reddy, A.Srivastava, S.R.Gowda, H.Gullapalli, M.Dubey, and P.M .Ajayan,“Synthesis of nitrogen-doped graphene films for lithium battery application.”, ACS Nano,4, 2010, 6337-6342
62.W.H.Shin, H.M.Jeong, B.G.Kim, J.K.Kang, and J.W. Choi, Nitrogen-Doped Multiwall Carbon Nanotubes for Lithium Storage with Extremely High Capacity ,ACS Nano,12, 2012, 2283-2288
63.Z.K. He , Q. Sun , K. Xie , P. Lu , Z. Shi , A. R. Kamali , Reactive molten salt synthesis of natural graphite flakes decorated with SnO2 nanorods as high performance, low cost anode material for lithium ion batteries, Journal of Alloys and Compounds, 792, (2019), 1213-1222
64.W. Su , Y. Liang, Y. Tang , Facile situ synthesis of C@SnO2/Sn@rGO hybrid nanosheets as high performance anode materials for lithium-ion batteries, Journal of Alloys and Compounds , 801, 2019, 402-408
65.M.N. Obrovac, L. Christensen, “Structural Changes in Silicon Anodes during Lithium Insertion/Extraction”,Electrochem. Solid-State Lett., 7, 2004, p. A93
66.M. Wachtler, J.O. Besenhard, M. Winter, “Tin and tin-based intermetallics as new anode materials for lithium-ion cells”,J. Power Sources, 94, 2001, p. 189
67.K. Wang, X. He, J. Ren, L. Wang, C. Jiang, C. Wan., “Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides”,Electrochim. Acta, 52, 2006,, p. 1221
68.Y. Hmon, T. Brousse, F. Jousse, P. Topart, P. Buvat, D.M. Schleich, Aluminum negative electrode in lithium ion batteries ,J. Power Sources, 97–98, 2001, p. 185
69.鄭博元,射頻磁控濺鍍法製備鋰離子二次電池用鋰-錳氧化物薄膜電極,國立雲林科技大學化學工程研究所,2006
70.柯賢文 編著,表面與薄膜處理技術,全華科技圖書股份有限公司,2005。
71.M. Yoshio, H.Y. Wang, K. Fukuda, Y. Hara, Y. Adachi., “Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material”J. Electrochem. Soc., 147, 2000, pp. 1245–1250
72.H.-Y. Lee, S.-M. Lee., “Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries”,J. Power Sources, 112, 2002, pp. 649–654
73.M.N. Obrovac, L. Christensen, “Structural Changes in Silicon Anodes during Lithium Insertion/Extraction”,Electrochem. Solid-State Lett., 7, 2004, p. A93
74.M. Wachtler, J.O. Besenhard, M. Winter, “Tin and tin-based intermetallics as new anode materials for lithium-ion cells”,J. Power Sources, 94, 2001, p. 189
75.K. Wang, X. He, J. Ren, L. Wang, C. Jiang, C. Wan., “Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides”,Electrochim. Acta, 52, 2006,, p. 1221
76.P.Lv,H.Zhao,J.Wang,X.Liu,T.Zhang,Q.Xia, Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries, Journal of Power Sources, 237, 2013, p. 291
77.W. Wang, Y. Liang, Y. Kang, L. Liu, Z. Xu , X. Tian, W. Mai, H. Fu, H. Lv, K. Teng, X. Jiao, F. Li, Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteriesMaterials Chemistry and Physics, 223, 2019, 762-770
78.H. H. Trana , P. H. Nguyena , V. H. Caoa , L. T. Nguyena , V. M. Tranb , M. P. Leb , S.J. Kimc , V. Vo, SnO2 nanosheets/graphite oxide/g-C3N4 composite as enhanced performance anode material for lithium ion batteriesChemical Physics Letters, 715, 2019, 284-292
79.D. Hernandez , F. Mendoza , E. Febus, B. R. Weiner, and G. Morell, Binder free SnO2-CNT composite as anode material for Li-Ion battery, Journal of Nanotechnology, 381273, Volume 2014, 9
80.J. Shi, N. Lin, D. Liu, Y. Wang, and H. Lin, Preparation of C/SnO2 composite with rice husk-based porous carbon carrier loading ultrasmall SnO2 nanoparticles for anode in lithium-ion batteries,Journal of Electroanalytical Chemistry, 857 (2020) 113634.
81.Y.Fu, R.Ma,Y.Shu, Z.Cao,X.Ma, Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications ,Nono Letters, 63 (2009) 1946.
82.W. Xie, L.Gu, F. Xia, B. Liu, X.Hou, Q. Wang, D.Liu, and D. He, Fabrication of voids-involved SnO2@C nanofibers electrodes with highly reversible Sn/SnO2 conversion and much enhanced coulombic efficiency for lithium-ion batteries,Journal of Power Sources,372 (2016) 21-28
83.Q. Tana , Z. Konga , X. Chena , L. Zhanga , X. Hua , M. Mua , H. Suna , X. Shaoa , X. Guana , M. Gaoa , and B. Xua, Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries,Applied Surface Science,485, (2019) ,314-322
84.Q. Tiana , Y. Tian , Z. Zhang , L.Yang , and S. Hirano, Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries, Journal of Power Sources,291, (2015) ,173-180
85.莊鎮宇,“石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”,物理雙月刊33(2) ,145-256
86.P.Simon, Y .Gogotsi., Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems., Accounts Chem. Res., 46,5 , 2013, 1094-1103.
87.N. R .Franklin., Q. Wang, T. W.Tombler, , Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems, Applied Physics Letters, 81,5 , 2002, 913-915.
88.B .Marinho,. M .Ghislandi., Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technology, 221 , 2012, 351-358.
89.M. Zhang , Z. Sun , T. Zhang , D. Sui , Y. Ma , Y. Chen, Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries , Carbon,102, (2016) ,32-38
90.P. Dou , Z. Cao , C. Wang , J. Zheng , Multilayer Zn-doped SnO2 hollow nanospheres encapsulated in covalently interconnected three-dimensional graphene foams for high performance lithium-ion batteries,X. Xu, Chemical Engineering Journal,320 , (2017) ,405-415
91.H. Wang, G. Jiang, X. Tan, J. Liao, X. Yang, R. Yuan, Simple preparation of SnO2/C nanocomposites for lithium ion battery anode ,Inorganic Chemistry Communications, 95 (2018) 67.
92.U. Toçoğlu, G. Hatipoğlu, M. Alaf, F. Kayış, and H. Akbulut, Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering ,Surface Science, 389 (2016) 507.
93.J. Wang, H. Zhao, J. He, and C. Wang, Nano-sized SiOx/C composite anode for lithium ion batteries,Journal of Power Sources, 196 (2011) 4811.
94.U. Tocoglu, O. Cevher, and M. O. Guler, Core–shell tin-multi walled carbon nanotube composite anodes for lithium ion batteries, International Journal of Hydrogen Energy, 39 (2014) 21386.
95.Y. R. Jhan, J. G. Duh, and S. Y. Tsai, Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction ,Diamond and Related Materials, 20 (2011) 413.
96.X. Li, Y. Zhang, H. Zhang, Y. Feng, and Y. Wang, Porous Double-shelled SnO2 @ C Hollow Spheres as High-Performance Anode Material for Lithium Ion Batteries, Electrochimica Acta, 195 (2016) 208.
97.Y. Hong, W. Mao, Q. Hu, S.Chang, D. Li, J. Zhang, G. Liud, and G.Ai, Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes,Journal of Power Sources, 428, (2019) ,44-52.
98.Wang, W., S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, and C.S. Ozkan, Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy, 2013. 2(2): p. 294-303.
99.A.C .Ferrari., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett. 97, 187401
100.J.Zhu, J.Yang, R.Miao, Z.Yao, Xi.Zhuang, X.Fengc, Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage, J. Mater. Chem. A, 4 , 2016, 2286
101.H .Hiura, T.W. Ebbesen, K .Tanigaki, et al, Raman studies of carbon nanotubes ,Chem. Phys. Lett 202, 1993,509
102.汪建民主編,材料分析,中國材料科學學會,新竹市,民國 87
103.K .Suenaga., M.P .Johanson., N .Hellgren., E .Broitman., L.R Wallenberg., C .Colliex., J.E. Sundgren., L .Hultman., Carbon nitride nanotubulite – densely-packed and well-aligned tubular nanostructures, Chem. Phys. Lett. 300, 1999, 695
104.H. Sjöström, S. Stafström, M. Bomanand J.-E. Sundgren. Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure, Phys. Rev. Lett. 75, 1995, 1136
105.Lin C. C.,Wei R. C. , Effects of Carbon Nanotubes Acid Treated or Annealed and Manganese Nitrate Thermally Decomposed on Capacitive Characteristics of Electrochemical Capacitors,Journal of The Electrochemical Society, Vol. 159, No. 6,pp. A664-A668
106.B. Babu , N. Reddy , K. Yoo , D. Kim and J. Shim , Bandgap tuning and XPS study of SnO2 quantum dots , Materials Letters, 221, (2018) ,211-215
107.Y.S. Lin, J.G. Duh, and M.H. Hung, Shell-by-Shell Synthesis and Applications of Carbon-Coated SnO2 Hollow Nanospheres in Lithium-Ion Battery ,The Journal of Physical Chemistry C, 114, (2010) , 13136-13141
108.Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries, Journal of Power Sources, 196, 2011 ,10240–10243
109.J.X. Zhou, M.S. Zhang, J.M. Hong, and Z. Yin , Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires, Solid State Communications,138, 2006,242–246
110.C. C Hu.andTsou, The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies ,Journal of Power Sources 115, 2003, pp.179
111.M. V. Reddy, B. Pecquenard, P. Vinatier, and A. Levasseur, Effect of Substrate Temperature on Morphology and Electrochemical Performance of Radio Frequency Magnetron Sputtered Lithium Nickel Vanadate Films Used as Negative Electrodes for Lithium Microbatteries, J. Phys. Chem. B 110, 2006, 4301-4306
112.P.Ouyang,H.Zhang,Y.Wang,W.Chen, Electrochemical & microstructural investigations of magnetron sputtered nanostructured ATO thin films for application in Li-ion battery,Electrochimica Acta,130,2014,232-238
113.Pallavi Verma, Pascal Maire and Petr Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta. 2010. 55: p.6332–6341
114.C.-H.Doh, C.-W.Park, H.-M.Shin, D.-H.Kima, Y.-D.Chung, S.-I.Moon, B.-S.Jin, H.-S.Kima, A new SiO/C anode composition for lithium-ion battery, Journal of Power Sources 179 , 2008, 367–370
115.Chuen-Chang LIN, Ping-Lin CHANG, Synthesis of Carbon Nanotube/Graphene Composites on Ni Foam without Additional Catalysts by CVD and their Nitrogen-Plasma Treatment for Anode Materials in Lithium-ion Batteries,Electrochemistry,86(3), 109–115 (2018) .
116.W. Wang, Y. Liang, Y. Kang, L. Liu, Z. Xu, X. Tian, W.i Mai, H. Fu, H. Lv, K. Teng, X. Jiao, and F. Li , Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries, Materials Chemistry and Physics, 223, (2019) ,762-770
117.F. Wang, X. Song, G. Yao, M. Zhao, R. Liu, M. Xu and Z. Sun , Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries,Scripta Materialia , 66, (2012) ,562-565
118.J. Wang , H. Wang , T. Yao , T. Liu , Y. Tian , C. Li , F. Li , L. Meng , and Y. Cheng, Porous N-doped carbon nanoflakes supported hybridized SnO2/Co3O4 nanocomposites as high-performance anode for lithium-ion batteries,Journal of Colloid and Interface Science , 560, (2020) ,546-554
119.A. L. M. Reddy,A. Srivastava, S. R. Gowda,H. Gullapalli, M. Dubey,and P. M. Ajayan, Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application, ACS Publications , 4, 11, (2010) ,6337-6342
120.S. Zhu, J.Liu, J.Sun, Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes, Applied Surface Science,484, (2019) ,600-609
121.J. Choi , Y. Myung , M. G. Guc , and S. K. Kimc , Nanohybrid electrodes of porous hollow SnO2 and graphene aerogel for lithium ion battery anodes,Journal of Industrial and Engineering Chemistry , 71, (2019) ,345-350
122.H. Liu, S. Chen, G. Wang, and S. Z. Qiao, Ordered Mesoporous Core/Shell SnO2/C Nanocomposite as High‐Capacity Anode Material for Lithium‐Ion Batteries ,Chemistry a European Journal , 19, (2013) ,16897-16901

電子全文 電子全文(網際網路公開日期:20250630)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top