跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊哲豪
研究生(外文):YANG,JHE-HAO
論文名稱:在大氣環境下製備鈣鈦礦太陽能電池
論文名稱(外文):Fabrication of Perovskite Solar Cells under Ambient Atmosphere
指導教授:劉博滔
指導教授(外文):LIU,BO-TAU
口試委員:闕居振王宗櫚劉博滔
口試委員(外文):CHUEH,CHU-CHENWANG,TZONG-LIULIU,BO-TAU
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:91
中文關鍵詞:大氣環境MAPbI3鈣鈦礦太陽能電池基材預熱
外文關鍵詞:ambient atmosphereMAPbI3perovskite solar cellsubstrate preheating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池概述 2
1.3 鈣鈦礦太陽能電池簡介 4
1.3.1 鈣鈦礦太陽能電池的發展歷程 4
1.3.2 鈣鈦礦太陽能電池的結構 7
1.3.3 鈣鈦礦太陽能電池的工作原理 8
1.3.4 鈣鈦礦薄膜的製備 9
1.3.4.1 一步溶液沉積法 9
1.3.4.2 二步溶液沉積法 9
1.3.4.3 氣相沉積法 10
第二章 文獻回顧 11
2.1 大氣下製備正式鈣鈦礦太陽能電池的發展歷程 11
2.2 水對鈣鈦礦薄膜製備過程的影響 18
2.2.1 水在鈣鈦礦前驅液體中的影響 18
2.2.2 環境濕度對於製備鈣鈦礦薄膜的影響 21
2.3 氧氣對鈣鈦礦薄膜的影響 25
2.4 大氣下製備正式鈣鈦礦太陽能電池 26
2.4.1 電子傳輸層的製備 26
2.4.2 鈣鈦礦層的製備 29
2.4.2.1 一步法溶液沉積的反溶劑選擇 29
2.4.2.2 基材預熱 33
2.4.3 電洞傳輸層的製備 36
第三章 實驗方法 37
3.1 實驗用化學藥品 37
3.2 儀器設備 38
3.2.1 電漿表面清潔機(Plasma Cleaner) 39
3.2.2 旋轉塗佈機(Spin-Coating) 39
3.2.3 手套箱(Gloves box) 39
3.2.4 太陽光模擬器 (Solar Simulator) 39
3.2.5 光電流-電壓量測儀(Source Meter) 40
3.2.6 X光繞射儀(X-ray Diffractometer, XRD) 40
3.2.7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 40
3.2.8 物理氣相沉積系統(Physical Vapor Deposition, PVD) 41
3.2.9 紫外光-可見光-近紅外光分光光譜儀 41
3.2.10 光致發光光譜(photoluminescence spectroscopy, PL) 42
3.2.11 太陽能電池全方位量子效率量測儀 42
3.3 大氣下製備鈣鈦礦太陽能電池 43
3.3.1 前驅液配置 43
3.3.1.1 SnO2薄膜前驅液 43
3.3.1.2 MAPbI3鈣鈦礦薄膜前驅液 43
3.3.1.3 Spiro-OMeTAD混合溶液 44
3.3.2 在大氣下製備MAPbI3鈣鈦礦薄膜實驗歷程 45
3.3.3 在大氣下鈣鈦礦太陽能電池組裝 47
第四章 結果與討論 49
4.1 在大氣下使用不同反溶劑對鈣鈦礦薄膜之影響 49
4.2 在大氣下不同基材的預熱溫度對鈣鈦礦薄膜之影響 50
4.2.1 光學顯微鏡之分析 50
4.2.2 掃描電子顯微鏡之分析 51
4.2.3 紫外光-可見光-近紅外光分光光譜儀之分析 61
4.2.4 X射線衍射儀之分析 62
4.2.5 光致發光之分析 63
4.3 在大氣環境下預熱機材使鈣鈦礦薄膜有無針孔缺陷的主要原因 64
4.4 不同預熱溫度的基材製備鈣鈦礦薄膜對鈣鈦礦太陽能電池之性能影響 69
4.4.1 短路電流密度-開環電壓曲線圖之結果 70
4.4.2 外部量子效率之結果 72
第五章 結論 73
參考文獻 74


[1]H. E. Murdock et al., REN21, "Renewables 2019 global status report," 2019.
[2]"http;//www.nrel.gov/pv/cell-efficiency.html,"2020
[3]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, The Electrochemical Society, "Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2)," in Proc. 210th ECS Meeting, 2006, p.1.
[4]A. Kojima, K. Teshima, and Y. Shirai, American Chemical Society, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," vol. 131, no. 17, pp. 6050-6051, 2009.
[5]J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. J. N. Park, Nanoscale, "6.5% efficient perovskite quantum-dot-sensitized solar cell," vol. 3, no. 10, pp. 4088-4093, 2011.
[6]H.-S. Kim et al.,Scientific Reports, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," vol. 2, no. 1, pp. 1-7, 2012.
[7]M. M. Lee, J. Teuscher, T. Miyasaka, and T. N. Murakami,Science,"Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," vol. 338, no. 6107, pp. 643-647, 2012.
[8]J. Luo et al.,Science, "Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts," vol. 345, no. 6204, pp. 1593-1596, 2014.
[9]M. Liu, and M. B. Johnston,Science, "Efficient planar heterojunction perovskite solar cells by vapour deposition," vol. 501, no. 7467, pp. 395-398, 2013.
[10]S. Ryu et al.,Energy & Environmental Science, "Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor," vol. 7, no. 8, pp. 2614-2618, 2014.
[11]H. Zhou et al.,Science,"Interface engineering of highly efficient perovskite solar cells," vol. 345, no. 6196, pp. 542-546, 2014.
[12]M. Saliba et al.,Energy & Environmental Science, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," vol. 9, no. 6, pp. 1989-1997, 2016.
[13]W. S. Yang et al.,Science, "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," vol. 356, no. 6345, pp. 1376-1379, 2017.
[14]N. J. Jeon et al.,Nature Energy, "A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells," vol. 3, no. 8, pp. 682-689, 2018.
[15]"https://www.ossila.com/pages/perovskites-and-perovskite-solar-cells-an-introduction,"2018.
[16]H.Kim,K.-G.Lim,and E.Science,Energy & Environmental Science,"Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers," vol. 9, no. 1, pp. 12-30, 2016.
[17]C. Chang, X. Zou, J. Cheng, T. Ling, Y. Yao, and D. J. M. Chen,Materials Science, "Influence of Solution Deposition Process on Modulating Majority Charge Carrier Type and Quality of Perovskite Thin Films for Solar Cells," vol. 12, no. 15, p. 2494, 2019.
[18]G. Liang et al.,MDPI,"Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation," vol. 8, no. 8, p. 256, 2018.
[19]Y. Cheng, F. So, and S.-W. J. M. H. Tsang,Materials Horizons, "Progress in air-processed perovskite solar cells: from crystallization to photovoltaic performance," vol. 6, no. 8, pp. 1611-1624, 2019.
[20]P. Nagarjuna, P. N. Kumar,S. P. Singh, and M. Deepa,Physical Chemistry Chemical Physics, "Efficient organic–inorganic hybrid perovskite solar cells processed in air," vol. 16, no. 45, pp. 24691-24696, 2014.
[21]P. Luo et al.,American Chemical Society, "Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions," vol. 7, no. 4, pp. 2708-2714, 2015.
[22]Q. Tai et al.,Nature Communications,"Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity," vol. 7, no. 1, pp. 1-8, 2016.
[23]Y. Cheng et al.,Solar RRL, "18% High‐Efficiency Air‐Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH," vol. 1, no. 9, p. 1700097, 2017.
[24]T. Singh et al.,Advanced Energy Materials, "Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity," vol. 8, no. 3, p. 1700677, 2018.
[25]K. Huang et al.,Solar RRL,"Highly Efficient Perovskite Solar Cells Processed Under Ambient Conditions Using In Situ Substrate‐Heating‐Assisted Deposition," vol. 3, no. 3, p. 1800318, 2019.
[26]W.-T. Wang et al.,Nano Energy, "Nanoparticle-induced fast nucleation of pinhole-free PbI2 film for ambient-processed highly-efficient perovskite solar cell," vol. 49, pp. 109-116, 2018.
[27]C.-G. Wu et al.,Energy & Environmental Science,"High efficiency stable inverted perovskite solar cells without current hysteresis," vol. 8, no. 9, pp. 2725-2733, 2015.
[28]D. Liu et al.,Advanced Science,"Aqueous‐Containing Precursor Solutions for Efficient Perovskite Solar Cells," vol. 5, no. 1, p. 1700484, 2018.
[29]H. Gao et al.,American Chemical Society,"Nucleation and crystal growth of organic–inorganic lead halide perovskites under different relative humidity," vol. 7, no. 17, pp. 9110-9117, 2015.
[30]M. Li et al.,Organic Electronics,"Comparison of processing windows and electronic properties between CH3NH3PbI3 perovskite fabricated by one-step and two-step solution processes," vol. 63, pp. 159-165, 2018.
[31]N. Aristidou et al.,Angewandte Chemie, "The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers," vol. 127, no. 28, pp. 8326-8330, 2015.
[32]Q. Jiang et al.,Nature Energy,"Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC (NH 2) 2 PbI 3-based perovskite solar cells," vol. 2, no. 1, pp. 1-7, 2016.
[33]J. Troughton,and K. Hooper,Nano Energy, "Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules," vol. 39, pp. 60-68, 2017.
[34]F. Yang et al.,American Chemical Society, "Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere," vol. 10, no. 19, pp. 16482-16489, 2018.
[35]Y. Guo, X. Yin, and J. Liu,Journal of Materials Chemistry A, "Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method," vol. 7, no. 32, pp. 19008-19016, 2019.
[36]K. Sveinbjörnsson et al.,Journal of Materials Chemistry A, "Ambient air-processed mixed-ion perovskites for high-efficiency solar cells," vol. 4, no. 42, pp. 16536-16545, 2016.
[37]Y. Ma, J. Fan, and C. Zhang,RSC Advances, "Enhanced charge collection and stability in planar perovskite solar cells based on a cobalt (iii)-complex additive," vol. 7, no. 60, pp. 37654-37658, 2017.
[38]"https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html," 2020.
[39]T. Petrov, I. Markova-Deneva, O. Chauvet, and R. Nikolov,Journal of University of Chemical Technology and Metallurgy , "Sem and ft-ir spectroscopy study of Cu, Sn and Cu-Sn nanoparticles," vol. 47, no. 2, 2012.

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文