跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭宜純
研究生(外文):ZHENG,YI-CHUN
論文名稱:含噻吩衍生物之光電材料合成及電化學性質探討
論文名稱(外文):Synthesis and Electrochemical Characterization of Thiophene Derivatives-Containing Optoelectronic Materials
指導教授:吳知易
指導教授(外文):WU,TZI-YI
口試委員:陳雲李立鼎郭仲文粘譽薰吳知易
口試委員(外文):CHEN, YUNLEE, LI-TINGKUO, CHUNG-WENNIEN, YU-HSUNWU,TZI-YI
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:211
中文關鍵詞:導電高分子電致變色材料呋喃噻吩
外文關鍵詞:conducting polymerelectrochromic materialsfuranthiophene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 電致變色簡介 5
1-3-1 導電與變色機制 5
1-3-2 電致變色材料種類 6
1-3-3 電致變色材料應用領域 7
1-3-4 電致變色元件結構 10
1-3-5 電致變色的基本參數 11
第二章 文獻回顧 14
第三章 實驗方法 30
3-1 研究架構圖 30
3-2 實驗藥品 31
3-3 實驗方法 32
3-3-1 薄層色層分析法(Thin layer chromatography, TLC) 32
3-3-2 管柱層析(Column chromatography) 33
3-3-3 再結晶(Recrystallization) 34
3-4 實驗儀器 35
3-5 ITO玻璃前處理 35
3-6 實驗裝置 36
3-6-1 電化學聚合 36
3-6-2 薄膜在液態電解質環境下的電化學與光學性質測試 37
3-6-3 薄膜在膠態電解質環境下的電化學與光學性質測試 38
3-7 實驗合成 39
3-7-1 SNS系列陽極材料導電高分子單體合成 46
3-7-2 陰極材料ProDOT系列導電高分子單體合成 39
3-7-3 離子液體之合成 43
3-8 高分子電解質膜的製備 45
第四章 結果與討論 46
4-1 導電高分子薄膜之電化學性質探討 60
4-1-1電鍍液測試 60
4-1-2 判斷起始氧化電位 60
4-1-3 定電位法之電化學聚合 65
4-2 五種SNS系列陽極導電高分子薄膜之氧化還原能力分析 69
4-3 SNS系列導電高分子薄膜在液態環境下之光學性質測試 75
4-3-1 五種SNS系列導電高分子薄膜在液態環境之吸收光譜值變化圖 75
4-3-2 SNS系列導電高分子薄膜之Eg、HOMO與LUMO 97
4-3-3 五種SNS系列導電高分子薄膜之光學對比值 98
4-3-4 五種SNS導電高分子薄膜之穩定性、應答時間、著色效率探討 108
4-4 五種陽極導電高分子薄膜與陰極導電高分子薄膜組成元件在膠態環境下之光學性質測試 115
4-4-1 十種元件之吸收光譜值變化圖 115
4-4-2 十種元件之光學對比值 152
4-4-3 十種元件之之穩定性、應答時間、著色效率探討 162
4-4-4 十種元件之光學記憶效應 170
4-4-5 十種元件之多圈循環電化學穩定性 179
4-5 五種SNS系列導電高分子之電致變色性質與文獻比較 179
第五章 結論 190
參考文獻 191


[1]何國川,電化學與無窗時代,1990,化工37,第3期,32-42.
[2]W. Steinkopf, R. Leitsmann, and K. H. Hofmann. Studien in der thiophenreihe. LVII. Über α‐polythienyle. Justus Liebigs Annalen der Chemie, 1941. 546,180-199.
[3]J. P. Ferraris, and M. D. Newton. Electrochemical and optical properties of thiophene-alkylheteroaromatic copolymers. Polymer, 1992. 33, 391-397.
[4]S. Koyuncu, İ. Kaya, F. B. Koyuncu, and E. Ozdemir. Electrochemical, optical and electrochromic properties of imine polymers containing thiophene and carbazole units. Synthetic Metals, 2009. 159, 1034-1042.
[5]T. Soganci, H. C. Soyleyici, E. Giziroglu, and M. Ak. Processable amide substituted 2,5-bis(2-thienyl)pyrrole based conducting polymer and its fluorescent and electrochemical properties. Journal of the Electrochemical Society, 2016. 163, 1096-1103.
[6]D. Yiğit, Y. A. Udum, M. Gullu, and L. Toppare. Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: Multicolored electrochromic polymers. Journal of Electroanalytical Chemistry, 2014. 712, 215-222.
[7]G. Zotti, G. Schiavon, N. Comisso, A. Berlin, and G. Pagani. Electrochemical synthesis and characterization of polyconjugated polyfuran. Synthetic Metals, 1990. 36, 337-351.
[8]A. Liang, M. Luo, Y. Liu, H. Wang, Z. Wang, X. Zheng, T. Cao, D. Liu, Y. Zhang, and F. Huang. Novel yellow phosphorescent iridium complexes with dibenzothiophene-S,S-dioxide-based cyclometalated ligand for white polymer light-emitting diodes. Dyes and Pigments, 2018. 159, 637-645.
[9]A. Günsel, M. Kandaz, A. Koca, and B. Salih. Functional fluoro substituted tetrakis-metallophthalocyanines: Synthesis, spectroscopy, electrochemistry and spectroelectrochemistry. Journal of Fluorine Chemistry, 2008. 129, 662-668.
[10]C. Wetzel, A. Vogt, A. Rudnick, E. Mena-Osteritz, A. Köhler, and P. Bäuerle Thiophene–pyrrole containing S,N-heteroheptacenes: Synthesis, and optical and electrochemical characterisation. Organic Chemistry Frontiers, 2017. 4, 1629-1635.
[11]S. P. Mishra, K. Krishnamoorthy, R. Sahoo, and A. Kumar. Synthesis and characterization of monosubstituted and disubstituted poly(3,4-propylenedioxythiophene) derivatives with high electrochromic contrast in the visible region. Journal of Polymer Science PartA: Polymer Chemistry, 2005. 43, 419-428.
[12]G. Kurtay, T. Soganci, M. Ak, and M. Güllü. Synthesis and computational bandgap engineering of new 3,4-alkylenedioxypyrrole (ADOP) derivatives and investigation of their electrochromic properties. Journal of the Electrochemical Society, 2016.163, 896–905.
[13]J. L. Bredas, and G. B. Street. Polarons, bipolarons, and solitons in conducting polymers. Accounts of Chemical Research, 1985. 18, 309-315.
[14]黃文昌,崑山科技大學光電系∕奈米中心,電致變色,Available: https://scitechvista.nat.gov.tw/c/sTDS.htm
[15]J. Liu, S. Mi, Z. Xu, J. Wu, J. Zheng, and C. Xu. Solution-processable thiophene-based electrochromic polymers bearing trifluoromethyl rather than long side chains. Organic Electronics, 2016. 37, 169–177.
[16]M. Shibata, K. I. Kawashita, R. Yosomiya, and Z. Gongzheng. Electrochromic properties of polypyrrole composite films in solid polymer electrolyte. European Polymer Journal, 2001. 37, 915-919.
[17]T. Y. Wu, W. B. Li, C. W. Kuo, C. F. Chou, J. W. Liao, H. R. Chen, and C. G. Tseng. Study of poly(methyl methacrylate)-based gel electrolyte for electrochromic device. International Journal of Electrochemical Science, 2013. 8, 10720–10732.
[18]Y. Xue, Z. Xue, W. Zhang, and, S. Chen. Effects on optoelectronic performances of EDOT end-capped oligomers and electrochromic polymers by varying thienothiophene cores. Journal of Electroanalytical Chemistry, 2019. 834, 150-160.
[19]C. Bird, and A. Kuhn. Electrochemistry of the viologens. Chemical Society Reviews, 1981. 10, 49-82.
[20]C. Solis, E. Baigorria, and M. Milanesio. Electrochemical polymerization of EDOT modified Phthalocyanines and their applications as electrochromic materials with green coloration, and strong absorption in the Near-IR. Electrochimica Acta, 2016. 213, 594-605.
[21]Halio smart glass system,Available: https://halioglass.eu/
[22]First smart window office tower opens in Vancouver. Available: https://www.vancourier.com/real-estate/first-smart-window-office-tower-opens-in-vancouver-1.23802180
[23]智慧安全駕乘新體驗,美國Gentex公司,Available: https://itw01.com/F2FVLEP.html
[24]The Most Successful New Airplane. Ever. Available: https://teague.com/work/787-dreamliner
[25]天寶智能材料有限公司,電致變色護目鏡,Available: https://julietintable.en.ec21.com/company_info.html
[26]CHI’ 19 Course: Prototyping transparent and flexible electrochromic displays,Available: https://decochrom.com/workshops/chi2019/
[27]J. Padilla, V. Seshadri, G. A. Sotzing, and T. F. Otero. Maximum contrast from an electrochromic material. Electrochemistry Communications, 2007. 9, 1931-1935.
[28]S. Kim, X. Kong, and M. Taya. Enhanced optical contrast of the electrochromic window based on anodic electrochromic polymesitylenes containing 9H-carbazole-9-ethanol moieties. ECS Transactions, 2013. 45, 279-286.
[29]L. Ji, Y. Dai, and S. Yan. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine. Scientific Reports, 2016. 6, 30068.
[30]C. L. Gaupp, D. M. Welsh, R. D. Rauh, and J. R. Reynolds. Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes. Chemistry of Materials, 2002. 14, 3964-3970.
[31]C. Bechinger, M. Burdis, and J. G. Zhang. Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Communications, 1997. 101, 753-756.
[32]I. D. Brotherston, D. S. Mudigonda, J. M. Osborn, J. Belk, J. Chen, D. C. Loveday, J. L. Boehme, J. P. Ferraris, and D. L. Meeker. Tailoring the electrochromic properties of devices via polymer blends, copolymers, laminates and patterns. Electrochimica Acta, 1999. 44, 2993-3004.
[33]T. H. Le, Y. Kim, and H. Yoon. Electrical and electrochemical properties of conducting polymers. Polymer, 2017. 9, 150.
[34]A. O. Patil, A. J. Heeger, and F. Wudl. Optical properties of conducting polymers. Chemical Reviews, 1988. 88, 183–200.
[35]M. Kertesz, S. Yang, and Y. Tian. Energy gaps and their control in thiophene-based polymers and oligomers. Handbook of Thiophene-Based Materials, 2009. 341–364.
[36]J. P. Ferraris, and T. R. Hanlon. Optical, electrical and electrochemical properties of heteroaromatic copolymers. Polymer, 1989. 30, 1319-1327.
[37]P. Just, C. Ching, and P. Lacaze. Synthesis of 2,5-di(2-thienyl)-1H-pyrrole N-linked with conjugated bridges. Tetrahedron, 2002. 58, 3467–3472.
[38] P. Camurlu, Z. Bicil, C. Gültekin, and N. Karagoren. Novel ferrocene derivatized poly(2,5-dithienylpyrrole)s: Optoelectronic properties, electrochemical copolymerization. Electrochimica Acta, 2012. 63, 245–250.
[39]H. C. Söyleyici, M. Ak, Y. Şahin, D. O. Demikol, and S. Timur. New class of 2,5-di(2-thienyl)pyrrole compounds and novel optical properties of its conducting polymer. Materials Chemistry and Physics, 2013. 142, 303–310.
[40] T. Y. Wu, and Y. S. Su. Electrochemical synthesis and characterization of 1,4-benzodioxan-based electrochromic polymer and its application in electrochromic devices. Journal of the Electrochemical Society, 2015. 162, 103–112.
[41] K. Lin, Y. Zhao, S. Ming, H. Liu, S. Zhen, J. Xu, and B. Lu. Blue to light gray electrochromic polymers from dodecyl-derivatized thiophene bis-substituted dibenzothiophene/dibenzofuran. Polymer Chemistry, 2016. 54, 1468–1478.
[42] S. H. Hsiao, and C. N. Wu. Synthesis and properties of fully triphenylamine-based polyamides bearing 3,5-bis(trifluoromethyl) and/or 3,5-dimethyl substituents on the pendent phenyl units. Polymer-Plastics Technology and Engineering, 2016. 56, 1236–1246.
[43]T. Torimoto, T. Tsuda, K. Okazaki, and S. Kuwabata. New frontiers in materials science opened by ionic liquids. Advanced Materials, 2010. 22, 1196–1221.
[44]J. Ding, D. Zhou, G. Spinks, G. Wallace, S. Forsyth, M. Forsyth, and D. MacFarlane. Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chemistry of Materials, 2003. 15, 2392–2398.
[45] K. Krishnamoorthy, A. V. Ambade, M. Kanungo, A. Q. Contractor, and A. Kumar, Rational design of an electrochromic polymer with high contrast in the visible region: dibenzyl substituted poly(3,4-propylenedioxythiophene). Journal of Materials Chemistry, 2001. 11, 2909-2911.
[46] C. L. Gaupp, D. M. Welsh, and J. R. Reynolds. Poly(ProDOT‐Et2): A high‐contrast, high‐coloration efficiency electrochromic polymer. Macromolecular Rapid Communications, 2002. 23, 885-889.
[47]J. H. Huang, C. Y. Hsu, C.W. Hu, C. W. Chu, and K. C. Ho. The influence of charge trapping on the electrochromic performance of poly(3,4-alkylenedioxythiophene) derivatives. ACS Applied Materials & Interfaces, 2010, 2, 351–359.
[48] D. M. Welsh, L. J. Kloeppner, L. Madrigal, M. R. Pinto, B. C. Thompson, K. S. Schanze, K. A. Abboud, D. Powell, and J. R. Reynolds. Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers. Macromolecules, 2002. 35, 6517-6525.
[49]J. Torres. The basics of running a chromatography column, 2016. 8. Available: https://bitesizebio.com/29947/basics-chromatography-column/
[50] A. Cihaner, O. Mert, and A. S. Demir. A novel electrochromic and fluorescent polythienylpyrrole bearing 1,1′-bipyrrole. Electrochimica Acta, 2009. 54, 1333-1338.
[51] T. Soganci, M. Ak, E. Giziroglu, and H. C. Söyleyici. Smart window application of a new hydrazide type SNS derivative. RSC Advances, 2016. 6, 1744-1749.
[52] S. Varis, M. Ak, C. Tanyeli, I. M. Akhmedov, and L. A. Toppare. Soluble and multichromic conducting polythiophene derivative. Polymer, 2006. 42, 2352-2360.
[53] A. Arslan, Ö. Türkarslan, C. Tanyeli, İ. M. Akhmedov, and L. Toppare. Electrochromic properties of a soluble conducting polymer: Poly(1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole). Journal of Materials Chemistry and Physics, 2007. 104, 410-416.
[54] E. Sefer, F. B. Koyuncu, E. Oguzhan, and S. Koyuncu. A new near-infrared switchable electrochromic polymer and its device application. Journal of Polymer Science: Part A: Polymer Chemistry, 2010. 48, 4419-4427.
[55] E Rustamlı, S. Goker, S. Tarkuc, Y. A. Udum, L. Toppare. Synthesis and characterization of thiophene and thieno[3,2-b]thiophene containing conjugated polymers. Journal of the Electrochemical Society, 2015. 162, 75-81.
[56] S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, and L. Toppare. Electrochromic properties of a soluble conducting polymer of 1-benzyl-2,5-di (thiophene-2-yl)-1H-pyrrole. Sensors and Actuators B: Chemical, 2007. 121, 622-628.
[57] Y. S. Su, J. C. Chang, and T. Y. Wu. Applications of three dithienylpyrroles-based electrochromic polymers in high-contrast electrochromic devices. Polymers, 2017. 9, 114.

電子全文 電子全文(網際網路公開日期:20250729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top