跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許維捷
研究生(外文):SYU, WEI-JIE
論文名稱:疏水性石墨烯奈米複合材料於低濃度氨氣感測之研究
論文名稱(外文):Hydrophobic Graphene Nanocomposites for Low Concentration Ammonia Sensing
指導教授:王詩涵王詩涵引用關係
指導教授(外文):WANG, SHIH-HAN
口試委員:王詩涵周學韜葛明德
口試委員(外文):WANG, SHIH-HANCHOU, HSUEH-TAOGER, MING-DER
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:105
中文關鍵詞:氨氣感測器電阻式呼氣檢測
外文關鍵詞:ammonia sensorresistiveexhaled gas test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章、前言 1
1-1研究背景 1
1-2研究動機與目的 2
第二章、文獻回顧 3
2-1氣體感測器介紹 3
2-1-1氣體感測器種類 3
2-1-1-1電化學式氣體感測器 3
2-1-1-2半導體式氣體感測器 5
2-1-1-3表面聲波氣體感測器 8
2-1-1-4光化學式氣體感測器 9
2-1-2氣體感測器特性 10
2-2氨氣氣體簡介 11
2-2-1人體呼出氨氣與健康的關係 11
2-2-2氨氣於環境中的關係 12
2-2-3氨氣感測器介紹 13
2-3感測材料介紹 14
2-3-1導電性高分子 14
2-3-1-1聚苯胺的特性 14
2-3-1-2聚苯胺薄膜氨氣感測器 15
2-3-2奈米碳材 17
2-3-2-1還原態氧化石墨烯薄膜氨氣感測器 17
2-3-3金屬氧化物 18
2-3-3-1氧化鎢薄膜氨氣感測器 20
2-3-4金屬奈米觸媒 22
第三章、實驗方法與步驟 24
3-1材料與設備 24
3-1-1實驗藥品 24
3-1-2儀器設備 25
3-1-2-1恆電位儀 25
3-1-2-2紫外光可見光光譜儀 26
3-1-2-3穿透式電子顯微鏡 26
3-1-2-4掃描式電子顯微鏡 27
3-1-2-5傅立葉紅外線光譜儀 27
3-1-2-6 X射線光電子能譜儀 28
3-1-2-7接觸角量測儀 28
3-2研究架構 29
3-3感測材料製備 30
3-3-1還原態氧化石墨烯/銅之合成 30
3-3-2聚苯胺/還原態氧化石墨烯/銅/氧化鎢複合材料之合成 31
3-4電極製備 32
3-5感測方式與系統架構 32
第四章、結果與討論 33
4-1 水熱法合成感測材料 33
4-1-1 材料分析 33
4-1-1-1 材料結構分析 33
4-1-1-2 化學結構分析 34
4-1-1-2-1 XRD分析 34
4-1-1-2-2 FTIR分析 35
4-1-1-3 能隙量測 36
4-1-2 氣體感測分析 38
4-1-2-1 靈敏度測試 38
4-1-2-1-1 水熱法合成參數之影響 38
4-1-2-1-2 不同材料對氨氣之感測結果 40
4-1-2-2 選擇性測試 41
4-1-2-3 穩定性測試 43
4-1-2-4 溫度效應 44
4-1-2-5 濕度效應 46
4-2 界面活性劑改質材料 47
4-2-1 表面型態分析 47
4-2-2 親疏水性測試 48
4-2-3 濕度效應 49
4-2-4 疏水表面測試 51
4-3 添加不同觸媒之複合材料 52
4-3-1 材料分析 52
4-3-1-1材料結構分析 52
4-3-1-2 化學結構分析 54
4-3-1-2-1 XRD分析 54
4-3-1-2-2 FTIR分析 55
4-3-1-2-3 能隙量測 56
4-3-2 氨氣感測試驗 57
4-3-3 選擇性測試 60
4-3-4 穩定性測試 64
4-3-5 溫度效應 67
4-3-6 濕度效應 69
4-4反應機構 71
4-5與過去文獻比較 72
第五章、結論 73
第六章、未來工作建議 74
參考文獻 75
附錄 86


1.S. Davies, P.S., D. Smith, Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney International, 1997. 52: p. 223-228.
2.S. Abdulla, T.L.M., B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors and Actuators B: Chemical, 2015. 221: p. 1523-1534.
3.M. Matsuguchi, A.O., Y. Sakai, Effect of humidity on NH3 gas sensitivity of polyaniline blend films. Sensors and Actuators B: Chemical, 2003. 94(1): p. 46-52.
4.Y. Qin, J.Z., Z. Wen, Synergistic functionalization of aligned silicon nanowires by Ag nanoparticles&PPy wrapping for improving gas-sensing response at high humidity level. Physica E: Low-dimensional Systems and Nanostructures, 2020. 118.
5.M. Rashid, A.H., M. Shoaib, M. A. Basit, H. Khan, Y. S. Kim, An amperometric hydrogen sensor based on Pt nanoparticles supported multi-wall carbon nanotubes. Journal of Electroanalytical Chemistry, 2019. 833: p. 173-180.
6.S. Yang, G.Z., Q. Peng, J. Fan, Y. Liu, G. Zhang, Y. Zhao, H. Li, Y. Zhang, In-situ growth of 3D rosette-like copper nanoparticles on carbon cloth for enhanced sensing of ammonia based on copper electrodissolution. Anal Chim Acta, 2020. 1104: p. 60-68.
7.C. Zhang, Y.L., J. Xu, M. Debliquy, Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sensors and Actuators A: Physical, 2019. 289: p. 118-133.
8.M. Poloju, N.J., M. V. R. Reddy, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Materials Science and Engineering: B, 2018. 227: p. 61-67.
9.Y. Byoun, C.J., S. W. Choi, Strategy for sensitive and selective NO2 detection at low temperatures utilizing p-type TeO2 nanowire-based sensors by formation of discrete n-type ZnO nanoclusters. Ceramics International, 2020. 46(11): p. 19365-19374.
10.X. Wang, S.L., L. Xie, X. Li, D. Lin, Z. Zhu, Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International, 2020. 46(10): p. 15858-15866.
11.P. G. Su, J.H.Y., Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sensors and Actuators A: Physical, 2020. 303.
12.S. Ghosal, P.B., A potential gas sensor device based on Pd/RGO/TiO2 nanotube ternary hybrid junction. Microelectronics Reliability, 2017. 78: p. 299-306.
13.B. Sakthivel, G.N., Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite. Journal of Alloys and Compounds, 2019. 788: p. 422-428.
14.N. Ramgir, R.B., N. S. Rawat, S. J. Patil, A. K. Debnath, S. C. Gadkari, K. P. Muthe, TiO2/ZnO heterostructure nanowire based NO2 sensor. Materials Science in Semiconductor Processing, 2020. 106.
15.G. Fan, D.C., T. Li, S. Yi, H. Ji, Y. Wang, Z. Zhang, G. Shao, B. Fan, H. Wang, H. Xu, H. Lu, Y. Zhou, R. Zhang, J. Sun, Enhanced room-temperature ammonia-sensing properties of polyaniline-modified WO3 nanoplates derived via ultrasonic spray process. Sensors and Actuators B: Chemical, 2020. 312.
16.Y. Tang, D.A., W. Li, X. Zu, S. Li, Y. Q. Fu, NH3 sensing property and mechanisms of quartz surface acoustic wave sensors deposited with SiO2, TiO2, and SiO2-TiO2 composite films. Sensors and Actuators B: Chemical, 2018. 254: p. 1165-1173.
17.H. A. Mohammed, S.A.R., M. H. A. Bakar, S. B. A. Anas, M. A. Mahdi, M. H. Yaacob, Fabrication and Characterizations of a Novel Etched-tapered Single Mode Optical Fiber Ammonia Sensors Integrating PANI/GNF Nanocomposite. Sensors & Actuators: B. Chemical 2019. 287: p. 71-77.
18.C. Turner, P.S., D. Smith, A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas, 2006. 27(4): p. 321-337.
19.Z. H. Endre, J.W.P., M. K. Storer, W. P. Hu, K. T. Moorhead, R. Allardyce, D. O. McGregor, J. M. Scotter, Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas, 2011. 32(1): p. 115-130.
20.1933-1003-ND. City Technology, https://media.digikey.com/pdf/Data%20Sheets/City%20Technology/75-184593230659.pdf.
21.GTF500-NH3 固定式氨氣偵測器. 育強科技股份有限公司, https://gastech.com.tw/mobile/catalog_gtf500nh3.html.
22.MQ-137. Ammonia gas detection sensor module, https://www.taiwaniot.com.tw/product/mq-137-%E6%B0%A3%E9%AB%94%E6%84%9F%E6%B8%AC%E5%99%A8%E6%A8%A1%E7%B5%84-%E6%B0%A8%E6%B0%A3%E6%AA%A2%E6%B8%AC%E5%82%B3%E6%84%9F%E5%99%A8/.
23.MiCS-5914. Amphenol SGX Sensortech, http://www.farnell.com/datasheets/2646424.pdf?_ga=2.2091633.1940060286.1595396985-1015548063.1595396985&_gac=1.58724447.1595396985.Cj0KCQjwpNr4BRDYARIsAADIx9xX24cjBwIXbcJ86_wBucfj8jGbD5uGxfoIDlLPJvW3UBp7yCBiu9waAsl8EALw_wcB.
24.U. Riaz, S.M.A., Conductive Polymer Composites and Blends, in Nanostructured Polymer Blends. 2014. p. 509-538.
25.張馨云. 導電塑膠聚苯胺. 國立台灣大學出版中心, https://www.ch.ntu.edu.tw/~genchem99/doc/demonstration/conducting_polymer-polyaniline.pdf 2016.
26.L. Kumar, I.R., A. Kaur, S. Annapoorni, Flexible room temperature ammonia sensor based on polyaniline. Sensors and Actuators B: Chemical, 2017. 240: p. 408-416.
27.S. Li, A.L., Z. Yang, J. He, J. Wang, F. Liu, H. Lu, X. Yan, P. Sun, X. Liang, Y. Gao, G. Lu, Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sensors and Actuators B: Chemical, 2019. 299.
28.M. Eising, C.E.C., R. V. Salvatierra, A. J. G. Zarbin, L. S. Roman, Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors and Actuators B: Chemical, 2017. 245: p. 25-33.
29.V. Talwar, O.S., R. C. Singh, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sensors and Actuators B: Chemical, 2014. 191: p. 276-282.
30.Z. Wu, X.C., S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors and Actuators B: Chemical, 2013. 178: p. 485-493.
31.U. V. Patil, N.S.R., N. Karmakar, A. Bhogale, A. K. Debnath, D. K. Aswal, S. K. Gupta, D. C. Kothari, Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Applied Surface Science, 2015. 339: p. 69-74.
32.G. K. Prasad, T.P.R., D. S. Kumar, M. G. Krishna, Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline. Sensors and Actuators B: Chemical, 2005. 106(2): p. 626-631.
33.N. G. Deshpande, Y.G.G., R. Sharma, J. C. Vyas, J. B. Kim, Y. P. Lee, Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensors and Actuators B: Chemical, 2009. 138(1): p. 76-84.
34.J. Cai, C.Z., A. Khan, C. Liang, W. D. Li, Highly transparent and flexible polyaniline mesh sensor for chemiresistive sensing of ammonia gas. RSC Advances, 2018. 8(10): p. 5312-5320.
35.S. Bera, S.K., H. Khan, S. Jana, Polyaniline coated graphene hybridized SnO2 nanocomposite: Low temperature solution synthesis, structural property and room temperature ammonia gas sensing. Journal of Alloys and Compounds, 2018. 744: p. 260-270.
36.F. A. Tabr, F.S., H. Adelnia, J. N. Gavgani, M. Mahyari, High sensitivity ammonia detection using metal nanoparticles decorated on graphene macroporous frameworks/polyaniline hybrid. Talanta, 2019. 197: p. 457-464.
37.X. Wang, D.G., X. Li, S. Lin, S. Zhao, M. N. Rumyantseva, A. M. Gaskov, Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature. Sensors and Actuators B: Chemical, 2019. 282: p. 290-299.
38.P. Veluswamy, S.S., P. Santhoshkumar, G. Karunakaran, C. W. Lee, D. Kuznetsov, J. Kadarkaraithangam, H. Ikeda, Sono-synthesis approach of reduced graphene oxide for ammonia vapour detection at room temperature. Ultrason Sonochem, 2018. 48: p. 555-566.
39.N. Li, Y.F., Y. Shi, Q. Xiang, X. Wang, J. Xu, A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism. Sensors and Actuators B: Chemical, 2019. 294: p. 106-115.
40.X. Qiang, M.H., L. Zhou, J. Liang, Pd nanoparticles incorporated porous silicon/V2O5 nanopillars and their enhanced p-type NO2-sensing properties at room temperature. Materials Letters, 2018. 231: p. 194-197.
41.U. T. Nakate, R.A., P. Patil, Y. T. Yu, Y. B. Hahn, Ultra thin NiO nanosheets for high performance hydrogen gas sensor device. Applied Surface Science, 2020. 506.
42.A. N. A. Anasthasiya, R.K.K., P.K, Rai, B. G. Jeyaprakash, Gold functionalized ZnO nanowires as a fast response/recovery ammonia sensor. Applied Surface Science, 2018. 449: p. 244-249.
43.H. Naderi, S.H., M. Ghaedi, K. Dashtian, M. M. Sabzehmeidani, Sensitive, selective and rapid ammonia-sensing by gold nanoparticle-sensitized V2O5/CuWO4 heterojunctions for exhaled breath analysis. Applied Surface Science, 2020. 501.
44.X. V. Le, T.L.A.L., H. L. Nguyen, C. T. Nguyen, Synergistic enhancement of ammonia gas-sensing properties at low temperature by compositing carbon nanotubes with tungsten oxide nanobricks. Vacuum, 2019. 168.
45.B. Karunagaran, P.U., S. J. Chung, S. Velumani, E. K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Materials Characterization, 2007. 58(8-9): p. 680-684.
46.S. Singh, S.K., S. Sharma, Room temperature high performance ammonia sensor using MoS2/SnO2 nanocomposite. Materials Today: Proceedings, 2020.
47.H. I. Chen, C.Y.H., W. C. Chen, C. H. Chang, T. C. Chou, I. P. Liu, K. W. Lin, W. C. Liu, Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sensors and Actuators B: Chemical, 2018. 256: p. 962-967.
48.W. Meng, L.D., J. Zhu, Y. Li, W. Meng, H. Zhou, L. Wang, A novel mixed potential NH3 sensor based on TiO2@WO3 core–shell composite sensing electrode. Electrochimica Acta, 2016. 193: p. 302-310.
49.N. V. Toan, C.M.H., N. V. Duy, N. D. Hoa, D. T. T. Le, N. V. Hieu, Bilayer SnO2-WO3 nanofilms for enhanced NH3 gas sensing performance. Materials Science and Engineering: B, 2017. 224: p. 163-170.
50.Y. Wang, J.L., X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, G. Lu, NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sensors and Actuators B: Chemical, 2017. 238: p. 473-481.
51.X. Qiang, M.H., B. Zhao, Y. Qin, T. Zhang, L. Zhou, J. Liang, Preparation of porous silicon/Pd-loaded WO3 nanowires for enhancement of ammonia sensing properties at room temperature. Materials Science in Semiconductor Processing, 2018. 79: p. 113-118.
52.S. Li, P.L., L. Zhao, C. Wang, D. Liu, F. Liu, P. Sun, X. Liang, F. Liu, X. Yan, Y. Gao, G. Lu, The room temperature gas sensor based on Polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sensors and Actuators B: Chemical, 2018. 259: p. 505-513.
53.V. Srivastava, K.J., Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films. Sensors and Actuators B: Chemical, 2008. 133(1): p. 46-52.
54.D. D. Nguyen, D.V.D., D. C. Nguyen, Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015. 6(3).
55.Z. Yuan, J.Z., F. Meng, Y. Li, R. Li, Y. Chang, J. Zhao, E. Han, S. Wang, Highly Sensitive Ammonia Sensors Based on Ag-Decorated WO3 Nanorods. IEEE Transactions on Nanotechnology, 2018. 17(6): p. 1252-1258.
56.J. Y. Leng, X.J.X., N. Lv, H. T. Fan, T. Zhang, Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J Colloid Interface Sci, 2011. 356(1): p. 54-57.
57.F. Lorestani, Z.S., P. Mn, Y. Alias, N. S. A. Manan, One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 2015. 208: p. 389-398.
58.C. Zou, F.L., S. Xue, Synthesis and oxygen vacancy related NO2 gas sensing properties of ZnO:Co nanorods arrays gown by a hydrothermal method. Applied Surface Science, 2015. 353: p. 1061-1069.
59.Sh. Nasresfahani, M.H.S., M. Tohidi, A. Zarifkar, Methane gas sensing properties of Pd-doped SnO2 /reduced graphene oxide synthesized by a facile hydrothermal route. Materials Research Bulletin, 2017. 89: p. 161-169.
60.D. Zhang, Y.S., C. Jiang, Y. Zhang, Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sensors and Actuators B: Chemical, 2017. 242: p. 15-24.
61.Q. Zhou, L.X., A. Umar, W. Chen, R. Kumar, Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sensors and Actuators B: Chemical, 2018. 256: p. 656-664.
62.Q. Wang, X.L., F. Liu, C. Liu, T. Su, J. Lin, P. Sun, Y. Sun, F. Liu, G. Lu, The enhanced CO gas sensing performance of Pd/SnO2 hollow sphere sensors under hydrothermal conditions. RSC Advances, 2016. 6(84): p. 80455-80461.
63.C. H. Han, D.W.H., I. J. Kim, J. Gwak, S. D. Han, K. C. Singh, Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sensors and Actuators B: Chemical, 2007. 128(1): p. 320-325.
64.Y. Wei, X.W., G. Yi, L. Zhou, J. Cao, G. Sun, Z. Chen, H. Bala, Z. Zhang, Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties. Materials Science in Semiconductor Processing, 2018. 75: p. 327-333.
65.張文昆. 紫外光/可見光分光光譜儀, 2012. file:///C:/Users/User/Downloads/uv_training_2012,7,31_uv_training.pdf.
66.高君陶. 電子顯微鏡的原理與應用. http://lib.csghs.tp.edu.tw:8080/%E4%B8%AD%E5%B1%B1%E5%A5%B3%E9%AB%98%E5%AD%B8%E5%A0%B1%E7%AC%AC%E4%BA%8C%E6%9C%9F/04EM%E7%9A%84%E5%8E%9F%E7%90%86%E8%88%87%E6%87%89%E7%94%A8%20(1).pdf.
67.X線光電子分光法(XPS)の原理と応用. JAIMA 一般社団法人 日本分析機器工業会, 2016, https://www.jaima.or.jp/jp/analytical/basic/electronbeam/xps/.
68.接觸角原理. 精志科技, 2017, https://www.amtech.com.tw/custom_61349.html.
69.M. Zong, Y.H., H. Wu, Y. Zhao, P. Liu, L. Wang, Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties. Materials Letters, 2013. 109: p. 112-115.
70.Y. Guo, T.W., F. Chen, X. Sun, X. Li, Z. Yu, P. Wan, X. Chen, Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale, 2016. 8(23): p. 12073-12080.
71.Y. Shen, W.W., X. Chen, B. Zhang, D. Wei, S. Gao, B. Cui, Nitrogen dioxide sensing using tungsten oxide microspheres with hierarchical nanorod-assembled architectures by a complexing surfactant-mediated hydrothermal route. Journal of Materials Chemistry A, 2016. 4(4): p. 1345-1352.
72.Tauc, J., Optical properties and electronic structure of amorphous. Mat. Res. Bull., 1968: p. 37-46.
73.H. Wang, S.N., H. Li, R. Ali, J. Fu, H. Xiong, J. Li, Z. Wu, W. M. Lau, N. Mahmood, R. Jia, Y. Liu, X. Jian, 3D hollow quasi-graphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sens, 2019. 4(9): p. 2343-2350.
74.F. W. Zeng, X.X.L., D.Diamond, K. T. Lau, Humidity sensors based on polyaniline nanofibres. Sensors and Actuators B: Chemical, 2010. 143(2): p. 530-534.
75.H. Xu, J.L., Y. Chen, J. Tang, Z. Zhao, Facile fabrication of superhydrophobic polyaniline structures and their anticorrosive properties. Journal of Applied Polymer Science, 2016. 133(47).
76.J. Duan, X.Z., W. Yuan, H. Chen, S. Jiang, X. Liu, Y. Zhang, L. Chang, Z. Sun, J. Du, Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation. Journal of Power Sources, 2015. 285: p. 76-79.
77.K. S. Divya, A.C., V. N. Reethu, S. Mathew, Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution. Applied Surface Science, 2018. 444: p. 811-818.
78.X. Yang, H.F., L. Zhang, X. An, S. Xiong, X. Jiang, A. Yu, Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires. Sensors and Actuators B: Chemical, 2019. 286: p. 483-492.
79.Z. Ye, Y.C., B. Liu, Y. Su,Z. Chen, H. Tai, Y. Jiang, Effective Room-Temperature Ammonia-Sensitive Composite Sensor Based on Graphene Nanoplates and PANI. ECS Journal of Solid State Science and Technology, 2018. 7(7): p. Q3148-Q3152.

電子全文 電子全文(網際網路公開日期:20250630)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文