|
參考文獻 1.行政院衛生福利部 2018 Available from: http://www.mohw.gov.tw/CHT. 2.Hall, J. E. (2016). Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences. 3.Brady, L. W., & Yaeger, T. E. (2004). Encyclopedia of radiation oncology. 4.Khan, F. M., & Gibbons, J. P. (2014). Khan's the physics of radiation therapy. Lippincott Williams & Wilkins. 5.梁基安, 賴佩伶, 蕭安成, 紀金輝, 張國平, 蘇經雄, & 施文彬. (2008). 強度調控式放射治療頭頸部腫瘤表面及淺部劑量之量測與分析. 放射治療與腫瘤學, 15(1), 53-61. 6.葉健一, 湯國政, 賴易成, & 賴允亮. (1995). 全頭皮放射治療技術之劑量術評估. 放射治療與腫瘤學, 2(1), 63-67. 7.黃國明, 成佳憲, 林文傑, 趙曉玲, 胡志忠, & 黃文濤. (2005). 典型與流行性卡波西氏肉瘤放射治療. 台灣應用輻射與同位素雜誌, 1(1), 35-41. 8.Banaee, N., Nedaie, H. A., Nosrati, H., Nabavi, M., & Naderi, M. (2013). Dose measurement of different bolus materials on surface dose. J. Radioprot. Res, 1(1), 10-13. 9.Chae, M. P., Rozen, W. M., McMenamin, P. G., Findlay, M. W., Spychal, R. T., & Hunter-Smith, D. J. (2015). Emerging applications of bedside 3D printing in plastic surgery. Frontiers in surgery, 2, 25. 10.Starosolski, Z. A., Kan, J. H., Rosenfeld, S. D., Krishnamurthy, R., & Annapragada, A. (2014). Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatric radiology, 44(2), 216-221. 11.Malik, H. H., Darwood, A. R., Shaunak, S., Kulatilake, P., Abdulrahman, A., Mulki, O., & Baskaradas, A. (2015). Three-dimensional printing in surgery: a review of current surgical applications. Journal of Surgical Research, 199(2), 512-522. 12.McMenamin, P. G., Quayle, M. R., McHenry, C. R., & Adams, J. W. (2014). The production of anatomical teaching resources using three‐dimensional (3D) printing technology. Anatomical sciences education, 7(6), 479-486. 13.Park, S. Y., Choi, C. H., Park, J. M., Chun, M., Han, J. H., & Kim, J. I. (2016). A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy. PloS one, 11(12), e0168063. 14.Thomadsen, B. (2008). Critique of traditional quality assurance paradigm. International Journal of Radiation Oncology* Biology* Physics, 71(1), S166-S169. 15.Liang, J. A., Lin, F. J., Shiau, A. C., Tu, C. P., Wu, H. T., Yang, S. N., & Chen, S. W. (1999). Assessment of Dose Perturbation Due to Air Cavity Effects under Megavoltage Photon Beams. Therapeutic Radiology and Oncology, 6(1), 49-54. 16.Kong, M., & Holloway, L. (2007). An investigation of central axis depth dose distribution perturbation due to an air gap between patient and bolus for electron beams. Australasian Physics & Engineering Sciences in Medicine, 30(2), 111. 17.Adamson, J. D., Cooney, T., Demehri, F., Stalnecker, A., Georgas, D., Yin, F. F., & Kirkpatrick, J. (2017). Characterization of water-clear polymeric gels for use as radiotherapy bolus. Technology in cancer research & treatment, 16(6), 923-929. 18.Olivera, S., Muralidhara, H. B., Venkatesh, K., Gopalakrishna, K., & Vivek, C. S. (2016). Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. Journal of materials science, 51(8), 3657-3674. 19.Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British dental journal, 219(11), 521-529. 20.Banks, J. (2013). Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE pulse, 4(6), 22-26. 21.Schubert, C., Van Langeveld, M. C., & Donoso, L. A. (2014). Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology, 98(2), 159-161. 22.Vyas, V., Palmer, L., Mudge, R., Jiang, R., Fleck, A., Schaly, B., ... & Charland, P. (2013). On bolus for megavoltage photon and electron radiation therapy. Medical Dosimetry, 38(3), 268-273. 23.Dias, A. G., Pinto, D. F., Borges, M. F., Pereira, M. H., Santos, J. A., Cunha, L. T., & Lencart, J. (2019). Optimization of skin dose using in‐vivo MOSFET dose measurements in bolus/non‐bolus fraction ratio: A VMAT and a 3 DCRT study. Journal of applied clinical medical physics, 20(2), 63-70. 24.Tack, P., Victor, J., Gemmel, P., & Annemans, L. (2016). 3D-printing techniques in a medical setting: a systematic literature review. Biomedical engineering online, 15(1), 115. 25.Hofmann, M., Burke, J., Pearlman, J., Fiedler, G., Hess, A., Schull, J., ... & Mankoff, J. (2016, October). Clinical and maker perspectives on the design of assistive technology with rapid prototyping technologies. In Proceedings of the 18th international ACM SIGACCESS conference on computers and accessibility (pp. 251-256). 26.Yang, W. F., Du, R., Chen, X. S., Zhang, C. Y., & Su, Y. X. (2017). A new method for designing and fabricating customised mandibular reconstruction plates using three-dimensional printing technology. International Journal of Oral and Maxillofacial Surgery, 46, 196. 27.Upex, P., Jouffroy, P., & Riouallon, G. (2017). Application of 3D printing for treating fractures of both columns of the acetabulum: benefit of pre-contouring plates on the mirrored healthy pelvis. Orthopaedics & Traumatology: Surgery & Research, 103(3), 331-334. 28.Bertassoni, L. E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A. L., ... & Khademhosseini, A. (2014). Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 14(13), 2202-2211. 29.Pugh, R., Lloyd, K., Collins, M., & Duxbury, A. (2017). The use of 3D printing within radiation therapy to improve bolus conformity: a literature review. Journal of Radiotherapy in Practice, 16(3), 319. 30.Su, S., Moran, K., & Robar, J. L. (2014). Design and production of 3D printed bolus for electron radiation therapy. Journal of applied clinical medical physics, 15(4), 194-211. 31.Park, J. W., & Yea, J. W. (2016). Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with Kimura's disease involving the auricle. Cancer/Radiothérapie, 20(3), 205-209. 32.Zhao, Y., Moran, K., Yewondwossen, M., Allan, J., Clarke, S., Rajaraman, M., ... & Robar, J. L. (2017). Clinical applications of 3-dimensional printing in radiation therapy. Medical Dosimetry, 42(2), 150-155. 33.Canters, R. A., Lips, I. M., Wendling, M., Kusters, M., van Zeeland, M., Gerritsen, R. M., ... & Verhoef, C. G. (2016). Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer. Radiotherapy and Oncology, 121(1), 148-153. 34.Kong, Y., Yan, T., Sun, Y., Qian, J., Zhou, G., Cai, S., & Tian, Y. (2019). A dosimetric study on the use of 3D‐printed customized boluses in photon therapy: A hydrogel and silica gel study. Journal of applied clinical medical physics, 20(1), 348-355. 35.Alashrah, S., Kandaiya, S., Maalej, N., & El-Taher, A. (2014). Skin dose measurements using radiochromic films, TLDS and ionisation chamber and comparison with Monte Carlo simulation. Radiation protection dosimetry, 162(3), 338-344. 36.Bilge, H., Cakir, A., Okutan, M., & Acar, H. (2009). Surface dose measurements with GafChromic EBT film for 6 and 18 MV photon beams. Physica Medica, 25(2), 101-104. 37.Nakano, M., Hill, R. F., Whitaker, M., Kim, J. H., & Kuncic, Z. (2012). A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film. Journal of applied clinical medical physics, 13(3), 83-97. 38.Han, E. Y., Wen, Z., Lee, H. J., & Lee, C. (2018). Measurement of electron return effect and skin dose reduction by a bolus in an anthropomorphic physical phantom under a magnetic resonance guided linear accelerator (MR-LINAC) system. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 7(3), 339-346. 39.Zhuang, A. H., & Olch, A. J. (2014). Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments. Medical physics, 41(8Part1), 081720. 40.Yusof, F. H., Ung, N. M., Wong, J. H. D., Jong, W. L., Ath, V., Phua, V. C. E., ... & Ng, K. H. (2015). On the use of optically stimulated luminescent dosimeter for surface dose measurement during radiotherapy. PloS one, 10(6), e0128544. 41.Borrego, D., Marshall, E. L., Tran, T., Siragusa, D. A., & Bolch, W. E. (2018). Physical validation of UF‐RIPSA: A rapid in‐clinic peak skin dose mapping algorithm for fluoroscopically guided interventions. Journal of Applied Clinical Medical Physics, 19(3), 343-350. 42.Hall, E. J., & Giaccia, A. J. (2000). Radiobiology for the Radiologist (Vol. 5). 43.Mallick, S., Rath, G. K., & Benson, R. (Eds.). (2019). Practical Radiation Oncology. Springer Nature. 44.Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International scholarly research notices, 2012. 45.連育德(譯)(民102)。自造者時代:啟動人人製造的第三次工業革命(原作者:Anderson C)。臺北市:天下文化。 46.林詠純(譯)(民103)。3D列印的概念、原理和應用:完整認識即將改變世界的新製造科技(原作者:水野操)。臺北市:木馬文化。 47.Yusof, M. F. M., Yahya, M. H., Rosnan, M. S., Abdullah, R., & Kadir, A. B. A. (2017, January). Dose measurement using Al2O3 dosimeter in comparison to LiF: Mg, Ti dosimeter and ionization chamber at low and high energy x-ray. In AIP Conference Proceedings (Vol. 1799, No. 1, p. 040007). AIP Publishing LLC. 48.Perks, C. A., Yahnke, C., & Million, M. (2008). Medical dosimetry using Optically Stimulated Luminescence dots and microStar readers. 49.Perks, C. A., LeRoy, G., Yoder, C., & Passmore, C. (2004, May). Development of the InLight™ monitoring service for world-wide application. In Proc 11th IRPA Congress, Madrid. 50.Glide‐Hurst, C., Bellon, M., Foster, R., Altunbas, C., Speiser, M., Altman, M., ... & Chetty, I. J. (2013). Commissioning of the Varian TrueBeam linear accelerator: a multi‐institutional study. Medical physics, 40(3), 031719. 51.Dronkers, N. F., & Baldo, J. V. (2009). Encyclopedia of neuroscience. L. R. Squire (Ed.). Elsevier. 52.Newton, H. B. (Ed.). (2016). Handbook of neuro-oncology neuroimaging. Academic Press. 53.Task Group 21, Radiation Therapy Committee, AAPM. (1983). A protocol for the determination of absorbed dose from high‐energy photon and electron beams. Medical Physics, 10(6), 741-771. 54.Montaseri, A., Alinaghizadeh, M., & Mahdavi, S. R. (2012). Physical properties of ethyl methacrylate as a bolus in radiotherapy. Iranian Journal of Medical Physics, 9(2), 127-134. 55.Kanematsu, N. (2015). Relationship between mass density, electron density, and elemental composition of body tissues for Monte Carlo simulation in radiation treatment planning. arXiv preprint arXiv:1508.00226. 56.Matsufuji, N., Tomura, H., Futami, Y., Yamashita, H., Higashi, A., Minohara, S., ... & Kanai, T. (1998). Relationship between CT number and electron density, scatter angle and nuclear reaction for hadron-therapy treatment planning. Physics in Medicine & Biology, 43(11), 3261. 57.Burleson, S., Baker, J., Hsia, A. T., & Xu, Z. (2015). Use of 3D printers to create a patient‐specific 3D bolus for external beam therapy. Journal of applied clinical medical physics, 16(3), 166-178. 58.Rockall, A. G., Hatrick, A., Armstrong, P., & Wastie, M. (2013). Diagnostic imaging. John Wiley & Sons. 59.Ricotti, R., Ciardo, D., Pansini, F., Bazani, A., Comi, S., Spoto, R., ... & Vavassori, A. (2017). Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Physica Medica, 39, 25-32. 60.Mukherji, A. (2018). Basics of Planning and Management of Patients during Radiation Therapy. Springer. 61.Butson, M. J., Cheung, T., Yu, P., & Metcalfe, P. (2000). Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiation Measurements, 32(3), 201-204. 62.Brady, L. W., Heilmann, H. P., Molls, M., & Nieder, C. (2006). Technical basis of radiation therapy: Practical clinical applications. Springer Science & Business Media.
|