跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張哲銘
研究生(外文):CHANG, CHE-MING
論文名稱:以三維列印技術建立感光軟性材料於高能量光子劑量學研究
論文名稱(外文):Dosimetric Measurement of Photosensitive Soft Materials by 3D Printing Technology in High-energy Photon Radiation
指導教授:蕭文田
指導教授(外文):HSIAO, WEN-TIEN
口試委員:王愛義賴律翰蕭文田
口試委員(外文):WANG, AI-YIHLAI, LU-HANHSIAO, WEN-TIEN
口試日期:2020-06-24
學位類別:碩士
校院名稱:元培醫事科技大學
系所名稱:醫學影像暨放射技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:83
中文關鍵詞:3D列印組織填充物感光樹酯材料材料噴塗成型光激發光劑量計
外文關鍵詞:3D printingBolusPhotosensitive MaterialMulti-jet ModellingOSLD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來生醫材料發展迅速,結合3D列印技術應用於放射治療領域,如組織填充物聚乳酸(Poly Lactic Acid, PLA)、近接治療固定裝置及醫學物理假體亦越趨普及。本研究在現行臨床使用組織填充物可提升表面劑量特性目的下,尋找可更加伏貼組織表面之替代組織填充物軟性材質。
使用感光樹酯材料噴塗成型(material-jetting) 3D列印技術,分製3塊相同大小(100 mm × 100 mm × 5 mm),不同密度(1.12 ~ 1.13 g/cm3) 組織填充物,以光激發光劑量計(Optically Stimulated Luminescence Dosimeter, OSLD)進行表面輻射劑量度量,分析不同組織填充物劑量特性並與臨床使用之商業化組織填充物做比較。研究結果顯示,同組織填充物以中心為主與周遭四點相互比較的ANOVA統計結果顯示p<0.05;在不同組織填充物於各量測點間相互比較的ANOVA統計結果也顯示p<0.05,皆具統計意義。組織填充物使用空氣與水做為間隙介質,其劑量結果顯示在不同介質下與臨床現象一致。藉由ANOVA統計結果的呈現,顯示3D列印組織填充物材質均勻度與商業化組織填充物具有一致性,且使用感光樹酯軟性材質的3D列印組織填充物與臨床使用之商業化組織填充物皆具有相似劑量分佈特徵。透過相對百分劑量比值分佈圖看出感光樹酯軟性材質在不同介質中分佈較一致且穩定,而材料成品柔軟度也可方便在不同的治療部位運用。

In recent years, biomedical materials have developed rapidly, combined with 3D printing technology to be used in the field of radiotherapy, such as tissue filling polylactic acid (PLA), brachytherapy fixation devices and medical physics prostheses.
In this study, under the purpose of improving the surface dose characteristics of the current clinical use of tissue fillers, we are looking for alternative soft materials for tissue fillers. Use photosensitive resin material spray molding (material-jetting) 3D printing technology application, divided into 3 pieces of the same size (100 mm × 100 mm × 5 mm), different density (1.12 ~ 1.13 g/cm3) tissue filler, and Use Optically Stimulated. Luminescence Dosimeter (OSLD) to measure surface dose radiation, analyze the physical and dose characteristics of different tissue filler samples and compare them with commercially available tissue fillers in clinical use. The results showed that the ANOVA statistical results of the comparison of the same tissue fillers with the center as the center and the surrounding four points showed p<0.05; the ANOVA statistical results of the comparison between the different tissue fillers at each measurement point also showed p<0.05. In addition, air and water are used as interstitial media, and the dosage results are discussed. The dosage characteristics under different media are also consistent with clinical use. The statistical results of ANOVA show that the uniformity of the 3D printed tissue fillers is consistent with that of commercially available tissue fillers, and the 3D printed tissue fillers using photosensitive resin soft materials are used in clinical applications. All substances have similar dose distribution characteristics. From the relative percentage dose ratio distribution diagram, it can be seen that the soft material of photosensitive resin is more consistent and stable in different media, and the softness of the finished material can also be conveniently used in different treatment sites.

論文口試委員審定書
誌 謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論
1.1 前言
1.1.1 背景
1.1.2 癌症的起因
1.1.3 癌症的治療
1.2 研究動機
1.3 研究目的
1.4 文獻回顧
1.5 論文架構
第二章 理論基礎
2.1 放射治療
2.1.1 原理
2.1.2 常使用於射束修正的裝置
2.2 三維列印
2.2.1 起源與原理
2.2.2 三維列印的流程
2.2.3 三維掃瞄成像
2.2.4 三維列印技術方法與原理介紹
2.3 光激發光劑量計
2.3.1 光激發光劑量計原理
2.3.2 光激發光劑量計計讀系統microStar原理
2.3.3 OSLD劑量量測系統技術的特性
第三章 材料與方法
3.1 實驗設備
3.1.1 游離腔
3.1.2 固態水假體
3.1.3 直線加速器
3.1.4 三維印表機
3.1.5 三維列印材料
3.1.6 光激發光劑量計
3.1.7 Microstar計讀器
3.1.8 統計分析
3.2 實驗流程圖
3.3 實驗方法
3.3.1 列印組織填充物實驗樣本
3.3.2 電腦斷層掃瞄
3.3.3 直線加速器的校正
3.3.4 模擬校正狀態下量測
3.3.5 模擬臨床治療狀況下量測
第四章 結果與討論
4.1 組織填充物之物理特性
4.1.1 物理密度的結果與討論
4.1.2 CT值的討論
4.2 組織填充物之劑量特性
4.2.1 量測不同組織填充物數據的結果與討論
4.2.2 劑量均勻度的比較與討論
4.2.3 空氣間隙對表面劑量的結果與討論
4.2.4 物質填補空氣間隙對表面劑量的影響討論
第五章 結論
5.1 結論
5.2 未來展望
參考文獻

參考文獻
1.行政院衛生福利部 2018 Available from: http://www.mohw.gov.tw/CHT.
2.Hall, J. E. (2016). Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences.
3.Brady, L. W., & Yaeger, T. E. (2004). Encyclopedia of radiation oncology.
4.Khan, F. M., & Gibbons, J. P. (2014). Khan's the physics of radiation therapy. Lippincott Williams & Wilkins.
5.梁基安, 賴佩伶, 蕭安成, 紀金輝, 張國平, 蘇經雄, & 施文彬. (2008). 強度調控式放射治療頭頸部腫瘤表面及淺部劑量之量測與分析. 放射治療與腫瘤學, 15(1), 53-61.
6.葉健一, 湯國政, 賴易成, & 賴允亮. (1995). 全頭皮放射治療技術之劑量術評估. 放射治療與腫瘤學, 2(1), 63-67.
7.黃國明, 成佳憲, 林文傑, 趙曉玲, 胡志忠, & 黃文濤. (2005). 典型與流行性卡波西氏肉瘤放射治療. 台灣應用輻射與同位素雜誌, 1(1), 35-41.
8.Banaee, N., Nedaie, H. A., Nosrati, H., Nabavi, M., & Naderi, M. (2013). Dose measurement of different bolus materials on surface dose. J. Radioprot. Res, 1(1), 10-13.
9.Chae, M. P., Rozen, W. M., McMenamin, P. G., Findlay, M. W., Spychal, R. T., & Hunter-Smith, D. J. (2015). Emerging applications of bedside 3D printing in plastic surgery. Frontiers in surgery, 2, 25.
10.Starosolski, Z. A., Kan, J. H., Rosenfeld, S. D., Krishnamurthy, R., & Annapragada, A. (2014). Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatric radiology, 44(2), 216-221.
11.Malik, H. H., Darwood, A. R., Shaunak, S., Kulatilake, P., Abdulrahman, A., Mulki, O., & Baskaradas, A. (2015). Three-dimensional printing in surgery: a review of current surgical applications. Journal of Surgical Research, 199(2), 512-522.
12.McMenamin, P. G., Quayle, M. R., McHenry, C. R., & Adams, J. W. (2014). The production of anatomical teaching resources using three‐dimensional (3D) printing technology. Anatomical sciences education, 7(6), 479-486.
13.Park, S. Y., Choi, C. H., Park, J. M., Chun, M., Han, J. H., & Kim, J. I. (2016). A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy. PloS one, 11(12), e0168063.
14.Thomadsen, B. (2008). Critique of traditional quality assurance paradigm. International Journal of Radiation Oncology* Biology* Physics, 71(1), S166-S169.
15.Liang, J. A., Lin, F. J., Shiau, A. C., Tu, C. P., Wu, H. T., Yang, S. N., & Chen, S. W. (1999). Assessment of Dose Perturbation Due to Air Cavity Effects under Megavoltage Photon Beams. Therapeutic Radiology and Oncology, 6(1), 49-54.
16.Kong, M., & Holloway, L. (2007). An investigation of central axis depth dose distribution perturbation due to an air gap between patient and bolus for electron beams. Australasian Physics & Engineering Sciences in Medicine, 30(2), 111.
17.Adamson, J. D., Cooney, T., Demehri, F., Stalnecker, A., Georgas, D., Yin, F. F., & Kirkpatrick, J. (2017). Characterization of water-clear polymeric gels for use as radiotherapy bolus. Technology in cancer research & treatment, 16(6), 923-929.
18.Olivera, S., Muralidhara, H. B., Venkatesh, K., Gopalakrishna, K., & Vivek, C. S. (2016). Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. Journal of materials science, 51(8), 3657-3674.
19.Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British dental journal, 219(11), 521-529.
20.Banks, J. (2013). Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE pulse, 4(6), 22-26.
21.Schubert, C., Van Langeveld, M. C., & Donoso, L. A. (2014). Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology, 98(2), 159-161.
22.Vyas, V., Palmer, L., Mudge, R., Jiang, R., Fleck, A., Schaly, B., ... & Charland, P. (2013). On bolus for megavoltage photon and electron radiation therapy. Medical Dosimetry, 38(3), 268-273.
23.Dias, A. G., Pinto, D. F., Borges, M. F., Pereira, M. H., Santos, J. A., Cunha, L. T., & Lencart, J. (2019). Optimization of skin dose using in‐vivo MOSFET dose measurements in bolus/non‐bolus fraction ratio: A VMAT and a 3 DCRT study. Journal of applied clinical medical physics, 20(2), 63-70.
24.Tack, P., Victor, J., Gemmel, P., & Annemans, L. (2016). 3D-printing techniques in a medical setting: a systematic literature review. Biomedical engineering online, 15(1), 115.
25.Hofmann, M., Burke, J., Pearlman, J., Fiedler, G., Hess, A., Schull, J., ... & Mankoff, J. (2016, October). Clinical and maker perspectives on the design of assistive technology with rapid prototyping technologies. In Proceedings of the 18th international ACM SIGACCESS conference on computers and accessibility (pp. 251-256).
26.Yang, W. F., Du, R., Chen, X. S., Zhang, C. Y., & Su, Y. X. (2017). A new method for designing and fabricating customised mandibular reconstruction plates using three-dimensional printing technology. International Journal of Oral and Maxillofacial Surgery, 46, 196.
27.Upex, P., Jouffroy, P., & Riouallon, G. (2017). Application of 3D printing for treating fractures of both columns of the acetabulum: benefit of pre-contouring plates on the mirrored healthy pelvis. Orthopaedics & Traumatology: Surgery & Research, 103(3), 331-334.
28.Bertassoni, L. E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A. L., ... & Khademhosseini, A. (2014). Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 14(13), 2202-2211.
29.Pugh, R., Lloyd, K., Collins, M., & Duxbury, A. (2017). The use of 3D printing within radiation therapy to improve bolus conformity: a literature review. Journal of Radiotherapy in Practice, 16(3), 319.
30.Su, S., Moran, K., & Robar, J. L. (2014). Design and production of 3D printed bolus for electron radiation therapy. Journal of applied clinical medical physics, 15(4), 194-211.
31.Park, J. W., & Yea, J. W. (2016). Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with Kimura's disease involving the auricle. Cancer/Radiothérapie, 20(3), 205-209.
32.Zhao, Y., Moran, K., Yewondwossen, M., Allan, J., Clarke, S., Rajaraman, M., ... & Robar, J. L. (2017). Clinical applications of 3-dimensional printing in radiation therapy. Medical Dosimetry, 42(2), 150-155.
33.Canters, R. A., Lips, I. M., Wendling, M., Kusters, M., van Zeeland, M., Gerritsen, R. M., ... & Verhoef, C. G. (2016). Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer. Radiotherapy and Oncology, 121(1), 148-153.
34.Kong, Y., Yan, T., Sun, Y., Qian, J., Zhou, G., Cai, S., & Tian, Y. (2019). A dosimetric study on the use of 3D‐printed customized boluses in photon therapy: A hydrogel and silica gel study. Journal of applied clinical medical physics, 20(1), 348-355.
35.Alashrah, S., Kandaiya, S., Maalej, N., & El-Taher, A. (2014). Skin dose measurements using radiochromic films, TLDS and ionisation chamber and comparison with Monte Carlo simulation. Radiation protection dosimetry, 162(3), 338-344.
36.Bilge, H., Cakir, A., Okutan, M., & Acar, H. (2009). Surface dose measurements with GafChromic EBT film for 6 and 18 MV photon beams. Physica Medica, 25(2), 101-104.
37.Nakano, M., Hill, R. F., Whitaker, M., Kim, J. H., & Kuncic, Z. (2012). A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film. Journal of applied clinical medical physics, 13(3), 83-97.
38.Han, E. Y., Wen, Z., Lee, H. J., & Lee, C. (2018). Measurement of electron return effect and skin dose reduction by a bolus in an anthropomorphic physical phantom under a magnetic resonance guided linear accelerator (MR-LINAC) system. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 7(3), 339-346.
39.Zhuang, A. H., & Olch, A. J. (2014). Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments. Medical physics, 41(8Part1), 081720.
40.Yusof, F. H., Ung, N. M., Wong, J. H. D., Jong, W. L., Ath, V., Phua, V. C. E., ... & Ng, K. H. (2015). On the use of optically stimulated luminescent dosimeter for surface dose measurement during radiotherapy. PloS one, 10(6), e0128544.
41.Borrego, D., Marshall, E. L., Tran, T., Siragusa, D. A., & Bolch, W. E. (2018). Physical validation of UF‐RIPSA: A rapid in‐clinic peak skin dose mapping algorithm for fluoroscopically guided interventions. Journal of Applied Clinical Medical Physics, 19(3), 343-350.
42.Hall, E. J., & Giaccia, A. J. (2000). Radiobiology for the Radiologist (Vol. 5).
43.Mallick, S., Rath, G. K., & Benson, R. (Eds.). (2019). Practical Radiation Oncology. Springer Nature.
44.Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International scholarly research notices, 2012.
45.連育德(譯)(民102)。自造者時代:啟動人人製造的第三次工業革命(原作者:Anderson C)。臺北市:天下文化。
46.林詠純(譯)(民103)。3D列印的概念、原理和應用:完整認識即將改變世界的新製造科技(原作者:水野操)。臺北市:木馬文化。
47.Yusof, M. F. M., Yahya, M. H., Rosnan, M. S., Abdullah, R., & Kadir, A. B. A. (2017, January). Dose measurement using Al2O3 dosimeter in comparison to LiF: Mg, Ti dosimeter and ionization chamber at low and high energy x-ray. In AIP Conference Proceedings (Vol. 1799, No. 1, p. 040007). AIP Publishing LLC.
48.Perks, C. A., Yahnke, C., & Million, M. (2008). Medical dosimetry using Optically Stimulated Luminescence dots and microStar readers.
49.Perks, C. A., LeRoy, G., Yoder, C., & Passmore, C. (2004, May). Development of the InLight™ monitoring service for world-wide application. In Proc 11th IRPA Congress, Madrid.
50.Glide‐Hurst, C., Bellon, M., Foster, R., Altunbas, C., Speiser, M., Altman, M., ... & Chetty, I. J. (2013). Commissioning of the Varian TrueBeam linear accelerator: a multi‐institutional study. Medical physics, 40(3), 031719.
51.Dronkers, N. F., & Baldo, J. V. (2009). Encyclopedia of neuroscience. L. R. Squire (Ed.). Elsevier.
52.Newton, H. B. (Ed.). (2016). Handbook of neuro-oncology neuroimaging. Academic Press.
53.Task Group 21, Radiation Therapy Committee, AAPM. (1983). A protocol for the determination of absorbed dose from high‐energy photon and electron beams. Medical Physics, 10(6), 741-771.
54.Montaseri, A., Alinaghizadeh, M., & Mahdavi, S. R. (2012). Physical properties of ethyl methacrylate as a bolus in radiotherapy. Iranian Journal of Medical Physics, 9(2), 127-134.
55.Kanematsu, N. (2015). Relationship between mass density, electron density, and elemental composition of body tissues for Monte Carlo simulation in radiation treatment planning. arXiv preprint arXiv:1508.00226.
56.Matsufuji, N., Tomura, H., Futami, Y., Yamashita, H., Higashi, A., Minohara, S., ... & Kanai, T. (1998). Relationship between CT number and electron density, scatter angle and nuclear reaction for hadron-therapy treatment planning. Physics in Medicine & Biology, 43(11), 3261.
57.Burleson, S., Baker, J., Hsia, A. T., & Xu, Z. (2015). Use of 3D printers to create a patient‐specific 3D bolus for external beam therapy. Journal of applied clinical medical physics, 16(3), 166-178.
58.Rockall, A. G., Hatrick, A., Armstrong, P., & Wastie, M. (2013). Diagnostic imaging. John Wiley & Sons.
59.Ricotti, R., Ciardo, D., Pansini, F., Bazani, A., Comi, S., Spoto, R., ... & Vavassori, A. (2017). Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Physica Medica, 39, 25-32.
60.Mukherji, A. (2018). Basics of Planning and Management of Patients during Radiation Therapy. Springer.
61.Butson, M. J., Cheung, T., Yu, P., & Metcalfe, P. (2000). Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiation Measurements, 32(3), 201-204.
62.Brady, L. W., Heilmann, H. P., Molls, M., & Nieder, C. (2006). Technical basis of radiation therapy: Practical clinical applications. Springer Science & Business Media.

電子全文 電子全文(網際網路公開日期:20250805)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top