(3.235.108.188) 您好!臺灣時間:2021/03/07 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉璧君
研究生(外文):LOW, PIK KUAN
論文名稱:以啤酒酵母表現基因重組谷氨酸脫羧酶酵素合成γ-氨基丁酸
論文名稱(外文):Expression of Recombinant Glutamate Decarboxylase (GAD) to Heighten Gamma-aminobutyric Acid (GABA) Production in Beer Yeast
指導教授:藍祺偉
指導教授(外文):John, Chi-Wei, Lan
口試委員:藍祺偉張嘉修陳博彥張煜光魏毓宏
口試委員(外文):John, Chi-Wei, LanJo-Shu, ChangBor-Yann, ChenYu-Kaung, ChangYu-Hong, Wei
口試日期:2020-01-13
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:69
中文關鍵詞:γ-氨基丁酸谷氨酸脫羧酶啤酒酵母
外文關鍵詞:gabagadbeer yeast
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Table of Contents
摘 要 ii
Abstract iii
Acknowledgements iv
Table of Contents v
List of Tables viii
List of Figures ix
List of Symbols x
Chapter One: Introduction 1
1.1 Research Background 1
1.2 Research Scope and Objective 2
Chapter Two: Literature Review 3
2.1 Beer 3
2.1.1 Components 3
2.1.2 Health Benefits 4
2.1.3 Produced by Yeasts 5
2.2 GABA 6
2.2.1 Role of GABA in the Human Brain 7
2.2.2 GABA Synthesis 7
2.2.3 Factors Contributing to GABA Production 8
2.3 GAD 10
2.3.1 Biological GAD enzyme for GABA production 13
2.4 Microorganisms with GAD 14
2.4.1 Lactic Acid Bacteria (LAB) 14
2.4.2 Escherichia coli 16
2.4.3 Saccharomyces cerevisiae 17
2.4.4 Other microorganisms and plants 18
2.5 Aqueous Two Phase System in the Recovery of GABA 19
2.5.1 Aqueous Two Phase System 19
2.5.2 Polymer-polymer and Polymer-salt based ATPS 19
2.5.3 Alcohol-salt based ATPS 20
2.5.4 Applications of ATPS 21
2.6 Quantity Analysis of GABA 22
Chapter Three: Materials and Methods 24
3.1 Experimental design 24
3.2 Microbial Strains 25
3.3 Instruments 25
3.4 Media 26
3.5 Other Chemicals 27
3.6 Yeast Fermentation and Analysis 27
3.7 FDNB Derivatization (GABA Analysis) 28
3.7.1 Preparation of Standard Solutions 28
3.7.2 Derivatization Procedures and Preparation for HPLC Analysis 29
3.7.3 HPLC Gradient Setup for GABA detection 29
3.8 Construction of Recombinant Escherichia coli strain 30
3.8.1 Primer Design 30
3.8.2 GAD Cloning 30
3.8.3 Restriction Enzyme Digestion 31
3.8.4 Construction of Recombinant pIYC08 vector plasmid 32
3.9 GAD Enzymatic Analysis 33
3.9.1 Extraction of GAD from Recombinant Escherichia coli DH5α 33
3.9.2 GAD Protein Analysis 33
3.9.3 GAD Activity Assay 34
3.9.4 Data Analysis 34
Chapter Four: Results and Discussion 35
4.1 Yeast Fermentation 35
4.2 GABA Analysis (FDNB Derivatization) 36
4.3 Construction of Recombinant Vector Plasmid 38
4.3.1 GAD Cloning 38
4.3.2 Restriction Enzyme Digestion 39
4.3.3 Expression of GAD in Escherichia coli DHα 40
Chapter Five: Conclusions and Future Work Plan 42
5.1 Conclusions 42
5.2 Future Work Plan 42
References 43
Appendices 58
Appendix 1: List of Abbreviations 58


References
Abe Y.; Umemura S.; Sugimoto K.; Hirawa N.; Kato Y.; Yokoyama N.; Yokoyama T.; Iwai J.; Ishii M., Effect of green tea rich in gamma-aminobutyric acid on blood pressure of Dahl salt-sensitive rats. American Journal of Hypertension 1995, 8, 74–79.
Acuña-Castroviejo D.; Escames, G.; Venegas, C.; Díaz-Casado, M. E.; Lima-Cabello, E.; López, L. C.; and Reiter, R. J., Extrapineal melatonin: sources, regulation, and potential functions. Cellular and Molecular Life Sciences 2014, 71(16), 2997–3025. doi:10.1007/s00018-014-1579-2
Albertsson, P. A., Partition of proteins in liquid polymer-polymer two-phase systems. Nature 1958, 182(4637), 709-711. doi:10.1038/182709a0.
Anthony, N. M.; Harrisson, J. B.; and Sattelle, D. B., GABA receptor molecules of insects. In Y. Pichon (Ed.), Comparative Molecular Neurobiology 1993 (Vol. 63, pp. 172-209). Cambridge, England: Birkhäuser.
Aoki, H.; Uda, I.; Tagami, K.; Furuya, Y.; Endo, Y.; and Fujimoto, K., The production of a new tempeh like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Bioscience, Biotechnology and Biochemistry 2003, 67(5), 1018-1023.
Arranz, S. G.; Chiva-Blanch, P.; Valderas-Martínez, A.; Medina-Remón, R. M.; Lamuela-Raventós, and Estruch R., Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4(7), 759– 81. doi:10.3390/nu4070759.
Arrúa, A. A.; Mendes, J. M.; Arrúa, P.; Ferreira, F. P.; Caballero, G.; Cazal, C.; … Fernández Ríos, D., Occurrence of Deoxynivalenol and Ochratoxin A in Beers and Wines Commercialized in Paraguay. Toxins 2019, 11(6), 308. doi:10.3390/toxins11060308
Banchuen, J.; Thammarutwasik, P.; Ooraikul, B.; Wuttijumnong, P.; and Sirivongpaisal, P., Increasing the bio-active compounds contents by optimizing the germination conditions of Southern Thai brown rice. Songlanakarin Journal of Science and Technology 2010, 32(3), 219-230.
Barret, E.; Ross, R. P.; O’Toole, P. W.; Fitzgerald, G. F.; and Stanton, C., γ-Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology 2012, 113(2), 411-417. doi:10.1111/j.1365-2672.2012.05344.x
Béchet, J.; Grenson, M.; and Wiame, J. –M. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. European Journal of Biochemistry 1970, 12, 31-39.
Ben Omar, N.; Ampe, F.; Raimbault, M.; Guyot, J. P.; and Tailliez, P., Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Systematic and Applied Microbiology 2000, 23, 285-291.
Benedek, M.; Panzierer, L.; Jauk, E.; and Neubauer, A. C., Creativity on tap? Effects of alcohol intoxication on creative cognition. Consciousness and Cognition 2017, 56, 128–134. doi:10.1016/j.concog.2017.06.020
Bertoldi, M.; Carbone, V.; and Borri-Voltattorni, C., Ornithine and glutamate decarboxylases catalyse an oxidative deamination of their alpha-methyl substrates. The Biochemical Journal 1999, 342, 509-512.
Bird, I. M., High performance liquid chromatography: principles and clinical applications. BMJ: British Medical Journal 1989, 299(6702), 783-787.
Blakenhorn, D.; Phillips, J.; and Slonczewski, J. L., Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. Journal of Bacteriology 1999, 181, 2209-2216.
Bora, M. M.; Borthakur, S.; Rao, P. C.; and Dutta, N. N., Aqueous two-phase partitioning of cephalosporin antibiotics: Effect of solute chemical nature. Separation and Purification Technology 2005, 45(2), 153-156. doi:10.1016/j.seppur.2004.08.006.
Bokulich, N. A.; and Bamforth, C. W., The Microbiology of Malting and Brewing. Microbiology and Molecular Biology Reviews 2013, 77(2), 157–172. doi:10.1128/mmbr.00060-12
Bras, E. J. S.; Soares, R. R. G.; Azevedo, A. M.; Fernandes, P.; Arévalo-Rodríguez, M.; Chu, V.; … Aires-Barros, M. R., A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems. Journal of Chromatography A 2017, 1515, 252-259.
Brunette, D. M.; and Till, J. E., A rapid method for the isolation of L-cell surface membranes using an aqueous two-phase polymer system. The Journal of Membrane Biology 1971, 5(3), 215-224.
Bu D-F.; Erlander M. G.; Hitz B. C.; Tillakaratne N. J. K.; Kaufman D. L.; and Wagner-McPherson C. B., Two human glutamate decarboxylase, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 2115–2119.
Capitani, G.; De Biase, D.; Aurizi, C.; Gut, H.; Bossa, F.; and Grutter, M. G., Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. The EMBO Journal 2003, 22, 4027-4037.
Castanie-Cornet, M. P.; Penfound, T. A.; Smith, D.; Elliott, J. F.; and Foster, J. W., Control of acid resistance in Escherichia coli. Journal of Bacteriology 1999, 181, 3525-3535.
Cho, Y. R.; Chang, J. Y.; and Chang, H. C., Production of γ-amino-butyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. Journal of Microbiology and Biotechnology 2007, 17, 104-109.
Choi, S. I.; Lee J. W.; Park, S. M.; Lee, M. Y.; Ji, G. E.; Park, M. S.; and Heo, T. R., Improvement of gamma-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. Journal of Microbiology and Biotechnology 2006, 16, 562-568.
Chow, Y. H.; Yap, Y. J.; Anuar, M. S.; Tejo, B. A.; Ariff, A.; Show, P. L.; …Ling, T. C., Interfacial partitioning behavior of bovine serum albumin in polymer-salt aqueous two-phase system. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2013, 934, 71-78. doi:10.1016/j.jchromb.2013.06.034.
Coleman, S. T.; Fang, T. K.; Rovinsky, S. A.; Turano, F. J.; and Moye-Rowley, W. S., Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. The Journal of Biological Chemistry 2001, 276, 244-250. doi: 10.1074/jbc.M007103200.
Cooper, J. R.; Bloom, F. E.; and Roth, R. H., The biochemical basis of neuropharmacology. Oxford: Oxford University Press 2003.
Cotter, P. D.; Gahan, C. G.; and Hill, C., A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Molecular Microbiology 2001, 40, 465-475.
Dai-xin, H.; Lu, Z.; Lan, J.; Li-te, L.; and Yong-Qiang, C., Development of Laozao enriched with GABA. Food Science & Technology 2008, 1, 22-25.
De Biase, D.; Tramonti, A.; John, R. A.; and Bossa, F., Isolation, overexpression and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein Expression and Purification 1996, 8, 430-438.
De Biase, D.; Tramonti, A.; Bossa, F.; and Visca, P., The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Molecular Microbiology 1999, 32, 1198-1211.
Dhakal, R.; Bajpai, V. K.; and Baek, K., Production of gaba (γ-aminobutyric acid) by microorganisms: A review. Brazilian Journal of Microbiology 2012,43(4),1230-1241. doi:10.1590/s1517-83822012000400001.
Diamond, A. D.; and Hsu, J. T., Aqueous two-phase systems for biomolecule separation. In G. T. Tsao (Ed.), Bioseparation 1992 (pp.89-135). Berlin, Heidelberg: Springer Berlin Heidelberg.
Diana, M.; Quilez, J.; and Rafecas, M., Gamma-aminobutyric acid as a bioactive compounds in foods: a review. Journal of Functional Foods 2014, 10 (Supplement C), 407-420. doi:https:doi.org/10.1016/j.jff.2014.07.004
Ebadi, M.; Wilt, S.; Ramaley, R.; Swanson, S.; and Mebus, C., The role of zinc and zinc-binding proteins in regulation of glutamic acid decarboxylase in brain. Prog Clin Biol Res. 1984, 144A, 255-275. PubMed PMID:6328536
Erlander, M. G.; and Tobin, A. J., The structural and functional hetero-geneity of glutamic acid decarboxylase: a review. Neurochem Res 1991, 16, 215–226.
Fonnum, F. and Fyske, E. M., Uptake and storage of GABA in synaptic vesicles. In: Martin DL, Olsen RW, editors. GABA in the nervous system: the view at fifty years. Philadelphia: Lippincott Williams and Wilkins 2000. p 51–64.
Fonseca, B. M.; Cristovao, A. C.; and Alves, G., An easy-to-use liquid chromatography method with fluorescence detection for the simultaneous determination of five neuroactive amino acids in different regions of rat brain. Journal of Pharmacological and Toxicological Methods 2018, 91, 72-79.
Franco, L.; Sánchez, C.; Bravo, R.; Rodríguez, A. B.; Barriga, C.; Romero, E.; and Cubero, J., The Sedative Effect of Non-Alcoholic Beer in Healthy Female Nurses. PLoS ONE 2012, 7(7), e37290. doi:10.1371/journal.pone.0037290
Franco, T. T.; Andrews, A. T.; and Asenjo, J. A., Use of chemically modified proteins to study the effect of a single protein property on partitioning in aqueous two-phase systems: Effect of surface hydrohphobicity. Biotechnology and Bioengineering 1996, 49(3), 300-308. doi:10.1002/(SICI)1097-0290(19960205)49:3<300::AID-BIT8>3.0.CO;2-O.
GABA Supplement - For Better Sleep and Relaxation - 60 Ct. (n.d.). Retrieved January 8, 2019, from https://www.naturalstacks.com/products/gaba
Gallidabino, M. D.; Hamdan, L.; Murphy, B.; and Barron, L. P., Suspect screening of halogenated carboxylic acids in drinking water using ion exchange chromatography – high resolution (Orbitrap) mass spectrometry (IC-HRMS). Talanta 2018, 178, 57-68.
Gardner, N. J.; Savard, T.; Obermeire, P.; Caldwell, G.; and Champagne, C. P. Selection and characterization of mixed starter culters for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. International Journal of Food Microbiology 2001, 64, 261-275.
Groβhans, S.; Wang, G.; Fischer, C.; and Hubbuch, J., An integrated precipitation and ion-exchange chromatography process for antibody manufacturing: Process development strategy and continuous chromatography exploration. Journal of Chromatography A 2018, 1533, 66-76.
Guo, X. F.; Aoki, H.; Hagiwara, T.; Masuda, K.; and Watabe, S., Identification of high gamma-aminobutyric acid producing marine yeast strains by physiological and biochemical characteristics and gene sequence analyses. Bioscience, Biotechnology and Biochemistry 2009, 73, 1527-1534.
Hao, R.; and Schmit, J. C., Cloning of the gene for glutamate decarboxylase and its expression during conidiation in Neurospora crassa. The Biochemical Journal 1993, 293, 735-738.
Hatti-Kaul, R., Aqueous two-phase systems. Molecular Biotechnology 2001, 19(3), 269-277. doi:10.1385/mb:19:3:269
He, C.; Li, S.; Liu, H.; Li, K.; and Liu, F., Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. Journal of Chromatography A 2005, 1082(2), 143-149.
Hiraga, K.; Ueno, Y.; and Oda, K., Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Bioscience, Biotechnology and Biochemistry 2008, 72, 1299-1306.
Huang, J.; Mei, L.; Wu, H.; and Lin, D., Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World Journal of Microbiology and Biotechnology 2007a, 23, 865-871.
Huang, J.; Mei, L.; Sheng, Q.; Yao, S.; and Lin, D., Purification and characterization of glutamate decarboxylase of Lactobacillus brevis CGMCC 1306 isolated from fresh milk. Chinese Journal of Chemical Engineering 2007b, 15, 157-161.
Huddleston, J.; Veide, A.; Köhler, K.; Flanagan, J.; Enfors, S. –O.; and Lyddiatt, A., The molecular basis of partitioning in aqueous two-phase systems. Trends in Biotechnology 1991, 9(1), 381-388.
Humia, B. V.; Santos, K. S.; Barbosa, A. M.; Sawata, M.; Mendonça, M. da C.; and Padilha, F. F., Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019, 24(8), 1568. doi:10.3390/molecules24081568
Jannoey, P.; Niamsup, H.; Lumyong, S.; Suzuki, T.; Katayama, T.; and Chairote, G., Comparison of gamma-aminobutyric acid production in Thai rice grains. World Journal of Microbiology and Biotechnology 2010, 26, 257-263.
Jeng, K. C.; Chen, C. S.; and Fang, Y. P., Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-erh tea. Journal of Agriculture Food Chemistry 2007, 55, 8787-8792.
Jockers, D. (2018, December 17) Is Your Brain Making Enough GABA?. Retrieved January 8, 2019, from https://drjockers.com/gaba/
Johnson, B. S.; Singh, N. K.; Cherry, J. H.; and Locy, R. D., Purification and characterization of glutamate decarboxylase from cowpea. Phytochemistry 1997, 46(1), 39-44. doi:https://doi.org/10.1016/S0031-9422(97)00236-7
Kaplan, N. M.; Palmer, B. F.; and Denke, M. A., Nutritional and Health Benefits of Beer. The American Journal of the Medical Sciences 2000, 320(5), 320–326. doi:10.1097/00000441-200011000-00004
Karahan, A. G.; Başyiğit Kılıç, G.; Kart, A.; Şanlıdere Aloğlu, H.; Öner, Z.; Aydemir, S.; and Harsa, Ş., Genotypic identification of some lactic acid bacteria by amplified fragment length polymorphism analysis and investigation of their potential usage as starter culture combinations in Beyaz cheese manufacture. Journal of Dairy Science 2010, 93(1), 1–11.doi:10.3168/jds.2008-1801
Kastenschmidt, J. M.; Avetyan, I.; and Villalta, S. A., Characterization of the Inflammatory Response in Dystrophic Muscle Using Flow Cytometry. In C. Bernardini (Ed.), Duchenne Muscular Dystrophy: Methods and Protocols 2018 (pp. 43-56). New York, NY: Springer New York.
Kato, Y.; Furukawa, K.; and Hara, S., Cloning and nucleotide sequence of the glutamate decarboxylase-encoding gene gadA from Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry 2002, 66(12), 2600-2605. doi:10.1271/bbb.66.2600
Kermanizadeh, A.; Jantzen, K.; Brown, D. M.; Moller, P.; and Loft, S., A Flow-Cytometry-based Method for the Screening of Nanomaterial-induced Reactive Oxygen Species Production in Leukocytes Subpopulations in Whole Blood. Basic & Clinical Pharmacology & Toxicology 2018, 122(1), 149-156.
Kim, J. Y.; Lee, M. Y.; Ji, G. E.; Lee, Y. S.; and Hwang, K. T., Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. International Journal of Food Microbiology 2009, 130, 12-16.
King, R. S.; Blanch, H. W.; and Prausnitz, J. M., Molecular thermodynamics of aqueous two-phase systems for bioseparations. AIChE Journal 1988, 34(10), 1585-1594.
Komatsuzaki, N.; Shima, J.; Kawamoto, S.; Momose, H.; and Kimura T., Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology 2005, 22,497-504.
Konkel, L. (2015, October 16). What Is GABA? Retrieved January 8, 2019, from https://www.everydayhealth.com/gaba/guide/
Kono I.; and Himeno K., Changes in gamma-aminobutyric acid content during beni-koji making. Bioscience, Biotechnology and Biochemistry 2000, 64, 617–619.
Kook, M. C.; Jo, S. C.; Song, J. S.; Choi, C. I.; Jung, J. Y.; Park, Y. S.; and Byeon, Y. R., GABA production by Lactobacillus sakei B2-16. International Symposium of. Korean. Food Science Technology 2004, P. 142.
Kubicek, C. P.; Hampel, W.; and Rohr, M., Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Archives of Microbiology 1979, 123(1), 73-79. doi:10.1007/BF00403504
Kuriyama, K.; and Sze, P., Blood-brain barrier to H3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology 1971,10(1),103-108. doi:10.1016/0028-3908(71)90013-x
Larsson, C., Kjellbom, P., Widell, S., and Lundborg, T. (1984). Sidedness of plant plasma membrane vesicles purified by partitioning in aqueous two-phase systems. FEMS Letters, 171(2), 271-276. doi:10.1016/0014-5793(84)80502-5.
Lebedova, J.; Hedberg, Y. S.; Odnevall Wallinder, I.; and Karlsson, H. L., Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 2017, gex027-gex027.
Lee, B. J.; Kim, J. S.; Kang, Y. M.; Lim, J. H.; Kim, Y. M.; Lee, M. S.; Jeong, M. H.; Ahn, C. B.; and Je, J. Y., Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chemistry 2010, 122(1), 271-276.
Li, H.; and Cao, Y., Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39, 1107-1116.
Li, H.; Cao, Y.; Gao, D.; Xu, H., A high γ-aminobutyric acid-producing ability Lactobacillus brevis isolated from Chinese traditional paocai. Annals of Microbiology 2008, 58, 649-653.
Li, H.; Qiu, T.; Gao, D.; and Cao, Y., Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 2009b, 38, 1439-1445. doi:10.1007/s00726-009-0355-3.
Li, Y.; Bai, Q.; Jin, X.; Wen, H.; and Gu, Z., Effects of cultivar and culture conditions on γ-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). Journal of the Science of Food and Agriculture 2010, 90(1), 52-57.
Liu, J.; Huang, F.; and He, H., Melatonin Effects on Hard Tissues: Bone and Tooth. International Journal of Molecular Sciences 2013, 14(5), 10063-10074. doi:10.3390/ijms140510063
Lu, X.; Chen, Z.; Gu, Z.; and Han, Y., Isolation of gamma-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochemical Engineering Journal 2008, 41, 48-52.
Lü, H.; and Zheng, Y., A newly developed tridimensional neural network for prediction of the phase equilibria of six aqueous two-phase systems. Journal of Industrial and Engineering Chemistry 2018, 57, 377-386.
Lü, Y.; Zhang, H.; Meng, X.; Wang, L.; and Guo, X., A validated HPLC method for the determination of GABA by pre-column derivatization with 2,4-dinitrofluorodinitrobenzene and its application to plant GAD activity study. Analytical Letters 2010, 43(17), 2663–2671.
Lyte, M., Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. BioEssays 2011, 33(8), 574-581. doi:10.1002/bies.201100024
Ma, D.; Lu, P.; Yan, C.; Fan, C.; Yin, P.; Wang, J.; and Shi, Y., Structure and mechanism of a glutamate-GABA antiporter. Nature 2012, 483, 632-636.
Malpiedi, L. P.; Picó, G. A.; Loh, W.; and Nerli, B. B., Role of polymer-protein interaction on partitioning pattern of bovine pancreatic trypsinogen and alpha-chymotrypsinogen in polyethyleneglycol/sodium tartrate aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2010, 878(21), 1831-1836. doi:10.1016/j.jchromb.2010.05.021.
Maras, B.; Sweeney, G.; Barra, D.; Bossa, F.; and John, R. A., The amino acid sequence of glutamate decarboxylase from Escherichia coli. European Journal of Biochemistry 1992, 204, 93-98.
Mardini, H.; Jumaili, B.; Record, C. O.; and Burke, D., Effect of protein and lactulose on the production of gamma-aminobutyric acid by faecal Escherichia coli. Gut 1991, 32, 1007-1010.
Martin D. L., Short-term control of GABA synthesis in brain. Progress in Biophysics & Molecular Biology 1993, 60, 17–28.
Martin D. L.; and Rimvall K., Regulation of gamma-aminobutyric acid synthesis in the brain. Journal of Neurochemistry 1993, 60, 395–407.
Martin D. L.; and Tobin A. J., Mechanisms controlling GABA synthesis and degradation in the brain. In: Martin DL, Olsen RW, editors. GABA in the nervous system: the view at fifty years. 2000 Philadelphia. Lippincott Williams and Wilkins. p 25–41.
Martin K.R., Silicon: The Health Benefits of a Metalloid. In: Sigel A., Sigel H., Sigel R. (eds) Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences, 2013, vol 13. Springer, Dordrecht. doi:https://doi.org/10.1007/978-94-007-7500-8_14
Masuda, K.; Guo, X.; Uryu, N.; Hagiwara, T.; and Watabe, S., Isolation of marine yeasts collected from the Pacific Ocean showing a high production of γ-aminobutyric acid. Bioscience, Biotechnology and Biochemistry 2008, 71, 3265-3272.
McLaughlin, B.J.; Wood, J.G.; Saito, K.; Barber, R.; Vaughn, J.E.; Roberts, E.; and Wu, J.Y., The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Research 1974, 76,377–391.
Merchuk, J. C.; Andrews, B. A.; and Asenjo, J. A., Aqueous two-phase systems for protein separation: Studies on phase inversion. Journal of Chromatography B: Biomedical Sciences and Applications 1998, 711(11), 285-293. doi:10.1016/S0378-4347(97)00594-X.
Miura, D.; Ito, Y.; Mizukuchi, A.; Kise, M.; Aoto, H.; and Yagasaki, K., Hypocholesterolemic action of pre-germinated brown rice in hepatoma-bearing rats. Life Sciences 2006, 79(3),259-264. doi:10.1016/j.lfs.2006.01.001.
Mountfort, D. O.; and Pybus, V., Effect of pH, temperature and salinity on the production of gamma-aminobutyric acid (GABA) from amines by marine bacteria. FEMS Microbiology Letters 1992, 101(4), 237-244.
Möykkynen T.; Uusi-Oukari M.; Heikkilä J.; Lovinger D.M.; Lüddens H.; and Korpi E.R., Magnesium potentiation of the function of native and recombinant GABA A receptors. Neuroreport 2001, 10, 2175-2719. PMID: 11447329
Nathan, B.; Bao, J.; Hsu, C.; Aguila, P.; Wu, R.; Yarom, M.; Kuo, C.; and Wu, J., A membrane form of brain L-glutamate decarboxylase: Identification, isolation, and its relation to insulin-dependent mellitus. Proceedings of the National Academy of Sciences of the United States of America 1994, 91(1), 242-246.
Nomura, M.; Kimoto, H.; Someya, Y.; and Furukawa, S., Production of γ-aminobutyric acid by cheese starters during cheese ripening. Journal of Dairy Science 1998, 81, 1486-1491.
Nomura, M.; Kimoto, H.; Someya, Y.; and Suzuki, I., Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. International Journal of Systematic Bacteriology 1999a, 49, 163-166.
Nomura, M.; Nakajima, I.; Fujita, Y.; Kobayashi, M.; Kimoto, H.; Suzuki, I.; and Aso, H., Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 1999b, 145, 1375-1380.
Oh, S. H., Stimulation of gamma-aminobutyric acid synthesis activity in brown rice by a chitosan/Glu germination solution and calcium/calmodulin. Journal of Biochemistry and Molecular Biology 2003, 36, 319-325.
Ooi, C. W.; Tey, B. T.; Hii, S. L.; Kamal, S. M. M.; Lan, J. C.; Ariff, A.; and Ling, T. C., Purification of lipase derived from Burkholderia pseudomallei with alcohol/salt-based aqueous two-phase systems. Process Biochemistry 2009, 44(10), 1083-1087. doi:10.1016/j.procbio.2009.05.008.
Parekh, B. S.; Srivastava, A.; Sundaram, S.; Ching-Heish, M.; Goldstein, J.; Barry, M.; and Zhou, Q., Correlating charge heterogeneity data generated by agarose gel isoelectric focusing and ion exchange chromatography methods. Journal of Chromatography B 2018, 1073, 1-9.
Park, K. B.; and Oh, S. H., Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus plantarum. Journal of Food Science and Nutrition 2004, 9, 324-329.
Park, K. B.; and Oh, S. H., Production and characterization of GABA rice yogurt. Food Science and Biotechnology 2005, 14, 518-522.
Park, K. B.; and Oh, S. H., Enhancement of gamma-aminobutyric acid production in Chungkukjang by applying a Bacillus subtilis strain expressing glutamate decarboxylase from Lactobacillus brevis. Biotechnology Letters 2006, 28, 1459-1463.
Park, K. B.; and Oh, S. H., Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technology 2007, 98, 312-319.
Park, K. B.; and Oh, S., Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technology 2007, 98(8), 1675-1679. doi:10.1016/j.biortech.2006.06.006.
Petroff, O. A. C., Book Review: GABA and Glutamate in the Human Brain. The Neuroscientist 2002, 8(6), 562–573. doi:10.1177/1073858402238515
Plokhov, A.Y.; Gusyatiner, M. M.; Yampolskaya, T. A.; Kaluzhsky, V. E.; Sukhareva, B. S.; and Schulga, A. A., Preparation of γ-Aminobutyric Acid Using E. coli Cells with High Activity of Glutamate Decarboxylase. Applied Biochemistry and Biotechnology 2000, 88(1-3), 257-266. doi: 10.1385/abab:88:1-3:257.
Police, A.; Shankar, V. K.; and Narashimha Murthy, S., RP-HPLC method for simultaneous estimation of vigabatrin, gamma-aminobutyric acid and taurine in biological samples. Journal of Chromatography B 2018, 1076, 44-53.
Powers, M. E.; Yarrow, J. F.; Mccoy, S. C.; and Borst, S. E. Growth Hormone Isoform Responses to GABA Ingestion at Rest and after Exercise. Medicine & Science in Sports & Exercise 2008, 40(1), 104-110. doi:10.1249/mss.0b013e318158b518
Price, C. T.; Koval, K. J.; and Langford, J. R., Silicon: A Review of Its Potential Role in the Prevention and Treatment of Postmenopausal Osteoporosis. International Journal of Endocrinology 2013, 1–6. doi:10.1155/2013/316783
Ramos, F.; Guezzar, M.; Grenson, M.; and Wiame, J. M., Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. European Journal of Biochemistry 1985, 149, 401-404.
Ratanaburee, A.; Kantachote, D.; Charernjiratrakul, W.; Penjamras, P.; and Chaiyasut, C., Enhancement of γ-aminobutyric acid in a fermented red seaweed beverage by starter culture Lactobacillus plantarum DW12. Electronic Journal of Biotechnology 2011, 14(3), 717-3458.
Rhyu M. R.; Kim E. Y.; Kim H. Y.; Ahn B. H.; and Yang C. B., Characteristics of the red rice fermented with fungus Monascus. Food Science and Biotechnology 2000, 9, 21–26.
Ribak, C.E.; Vaughn, J.E.; Saito, K.; Barber, R.; and Roberts, E., Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Resolution 1976, 116, 287–298.
Rice, E. W.; Johnson, C. H.; Dunnigan, M. E.; and Reasoner, D. J.; Rapid glutamate decarboxylase for detection of Escherichia coli. Applied and Environmental Microbiology 1993, 59, 4347-4349.
Richard, H.; and Foster, W., Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential. Journal of Bacteriology 2004, 186(18), 6032–6041. doi:10.1128/jb.186.18.6032-6041.2004.
Rizzello, C. G.; Cassone, A.; Di Cagno, R.; and Gobbetti, M., Synthesis of angiotensin I- converting enzyme (ACE)-Inhibitory peptides and γ-aminobutyric acid (GABA). Journal of Agricultural and Food Chemistry 2008, 56(16), 6936-6943.
Roberts, E.; and Frankel, S., γ-AMINOBUTYRIC ACID IN BRAIN: ITS FORMATION FROM GLUTAMIC ACID. Journal of Biological Chemistry 1950, 187(1), 55-63.
Saito, K.; Barber, R.; Wu, J.; Matsuda, T.; Roberts, E.; and Vaughn, J.E., Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proceedings of the National Academy of Sciences of the United States of America 1974, 71, 269–273.
Salvati, A.; Nelissen, I.; Haase, A.; Aberg, C.; Moya, S.; Jacobs, A.; … Dawson, K. A., Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact 2018, 9, 42-50.
Sánchez-Muniz, F. J.; Macho-González, A.; Garcimartín, A.; Santos-López, J. A.; Benedí, J.; Bastida, S.; and González-Muñoz, M. J., The Nutritional Components of Beer and Its Relationship with Neurodegeneration and Alzheimer’s Disease. Nutrients 2019, 11(7), 1558. doi:10.3390/nu11071558
Sanders, J. W.; Leenhouts, K.; Burghoorn, J.; Brands, J. R.; Venema, G.; and Kok, J., A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Molecular Microbiology 1998, 27, 299-310.
Sarah M. (2013, August 23). GABA and glutamate: The balancing act of the nervous system. Retrieved from https://neuroendoimmune.wordpress.com/2013/07/09/gaba-and-glutamate-the-balancing-act-of-the-nervous-system/
Satokari, R. M.; Vaughan, E. E.; Smidt, H.; Saarela, M.; Matto, J.; and de Vos, W. M., Molecular approaches for the detection and identification of bididobacteria and lactobacilli in the human gastrointestinal tract. Systematic and Applied Microbiology 2003, 26, 572-584.
Scheer, F. A. J. L.; and Czeisler, C. A., Melatonin, sleep, and circadian rhythms. Sleep Medicine Reviews 2005, 9(1), 5–9. doi:10.1016/j.smrv.2004.11.004
Schmit, J. C.; and Brody, S., Neurospora crassa conidial germination: Role of endogenous amino acid pools. Journal of Bacteriology 1975, 124, 232-242.
Schousboe, A.; and Waagepetersen, H. S., GABA: Homeostatic and pharmacological aspects. Gaba and the Basal Ganglia - From Molecules to Systems 2007, 9–19. doi:10.1016/s0079-6123(06)60002-2
Seok, J. H.; Park, K. B.; Kim, Y. H.; Bae, M. O.; Lee, M. K.; and Oh, S. H., Production and characterization of kimchi with enhances levels of gamma-aminobutyric acid. Food Science and Biotechnology 2008, 17, 940-946.
Serraj, R.; Shelp, B. J.; and Sinclair, T. R., Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiologia Plantarum 1998, 102(1), 79-86. doi:10.1034/j.1399-3054.1998.1020111.x
Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C. G.; Coda, R.; and Gobbetti, M., Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology 2007, 73, 7283-7290.
Small, P. L.; and Waterman, S. R., Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends in Microbiology 1998, 6, 214-216.
Smith, D. K.; Kassam, T.; Singh, B.; and Elliott, J. F., Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. Journal of Bacteriology 1992, 174, 5820-5826.
Soghmonian, J. J.; and Martin, D. L., Two isoforms of glutamate decarboxylase: why? Trends in Pharmacological Science 1998, 19, 500-505.
Su, M. T.; Takeshi, K.; and Tianyao, L., Isolation, characterization, utilization of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Myanmar fishery products fermented with boiled rice. Fisheries Science 2011, 77(2), 279.
Su, Y. C.; Wang, J. J.; Lin, T. T.; and Pan, T. M., Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. Journal of Industrial Microbiology and Biotechnology 2003, 30, 41-46.
Sun, T. S.; Zhao, S. P.; Wang, H. K.; Cai, C. K.; Chen, Y. F.; and Zhang, H. P., ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. European Food Research and Technology 2009, 228, 607-612.
Tamura, T.; Noda, M.; Ozaki, M.; Maruyama, M.; Matoba, Y.; Kumagai, T.; and Sugiyama, M., Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biological and Pharmaceutical Bulletin 2010, 33(10), 1673-1679.
Tan, Z. –j.; Li, F. –f.; and Zu, X. –l., Extraction and purification of anthraquinones derivatives from Aloe vera L. using alcohol/salt aqueous two-phase system. Bioprocess and Biosystems Engineering 2013, 36(8), 1105-1113.
Tepper, J. M.; Abercrombie, E. D.; and Bolam, J. P., GABA and the basal ganglia: From molecules to systems 2007. Amsterdam: Elsevier.
Tianwei, T.; Qing, H.; and Qiang, L., Purification of glycrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system. Biotechnology Letters 2002, 24(17), 1417-1420. doi:10.1023/a:1019850531640.
Tsushida T.; and Murai T., Conversion of glutamic-acid to gamma-aminobutyric-acid in tea leaves under anaerobic conditions. Agricultural and Biological Chemistry 1987, 51, 2865–2871.
Tubio, G.,; Pellegrini, L.; Nerli, B. B.; and Picó, G. A., Liquid-Liquid Equilibria of Aqueous Two-Phase Systems Containing Poly(ethylene glycols) of Different Molecular Weight and Sodium Citrate. Journal of Chemical & Engineering Data 2006, 51(1), 209-212. doi:10.1021/je050332p.
Ueno, Y.; Hayakawa, K.; Takahashi, S.; and Oda, K., Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience Biotechnology and Biochemistry 1997, 61, 1168-1171.
Wallace, W.; Secor, J.; and Schrader, L., Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiology 1984, 75, 170-175.
Wang, Y.; Yan, Y.; Hu, S.; Han, J.; and Xu, X., Phase Diagrams of Ammonium Sulfate + Ethanol/1-Propanol/2-Propanol + Water Aqueous Two-Phase Systems at 298.15K and Correlation. Journal of Chemical & Engineering Data 2010, 55(2) 876-881.
Wells, T. (2016, June 25). GABA. Retrieved January 8, 2019, from https://slowfoodnation.org/nootropics/gaba/
Wood, A. M.; Kaptoge, S.; Butterworth, A. S.; Willeit, P.; Warnakula, S.; Bolton, T.; … Burgess, S., Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. The Lancet 2018, 391(10129), 1513–1523. doi:10.1016/s0140-6736(18)30134-x
Wysoczanska, K.; Do, H. T.; Held, C.; Sadowski, G.; and Macedo, E. A., Effect of different organic salts on amino acids partition behavior in PEG-salt ATPS. Fluid Phase Equilibria 2018, 456, 84-91. doi:10.1016/j.fluid.2017.10.007.
Xavier, L.; Freire, M. S.; Vidal-Tato, I.; and González-Álvarez, J., Recovery of Phenolic Compounds from Eucalyptus globulus Wood Wastes using PEG/phosphate Aqueous Two-Phase Systems. Waste and Biomass Valorization 2017, 8(2), 443-452. doi:10.1007/s12649-016-9579-0.
Yang, N. C.; Jhou, K. Y.; and Tseng, C. Y., Antihypertensive effect of mulberry leaf aqueous extract containing γ-aminobutyric acid in spontaneously hypertensive rats. Food Chemistry 2012, 132(4), 1796-1801.
Yang, S. Y.; Lu, F. X.; Lu, Z. X.; Bie, X. M.; Jiao, Y.; Sun, L. J.; and Yu, B., Production of gamma-aminobutyric acid by Streptococcus salivarius subsp thermophilus Y2 under submerged fermentation. Amino Acids 2008, 34, 473-478.
Yao, J.; Zhang, B.; Ge, C.; Peng, S.; and Fang, J., Xanthohumol, a Polyphenol Chalcone Present in Hops, Activating Nrf2 Enzymes to Confer Protection against Oxidative Damage in PC12 Cells. Journal of Agricultural and Food Chemistry 2015, 63(5), 1521–1531. doi:10.1021/jf505075n
Yokoyama, S.; Hiramatsu, J.; and Hayakawa, K., Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO 12005. Journal of Bioscience and Bioengineering 2002, 93(1), 95-97.
Yoshimura, M.; Toyoshi, T.; Sano, A.; Izumi, T.; Fujii, T.; Konishi, C.; Inai, S.; Matsukura, C.; Fukuda, N.; Ezura, H.; and Obata, A., Antihypertensive effect of a γ-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 2010, 58, 615-619.
Yu, P.; Ren, Q.; Wang, X.; and Huang, X., Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Biochemical Engineering Journal 2019, 141, 252-258.
Yuan, H.; Wang, H.; Fidan, O.; Qing, Y.; Xiao, G.; and Zhan, J., Identification of new glutamate decarboxylases from Streptomyces for efficient production of γ-aminobutyric acid in engineered Escherichia coli. Journal of Biological Engineering 2019, 13(1). doi:10.1186/s13036-019-0154-7.
Zhao, M.; Ma, Y.; Wei, Z.-Z.; Yuan, W.-X.; Li, Y.-L.; Zhang, C.-H.; Xue, X.-T.; Zhou, H.-J. Determination and Comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of chinese tea. Journal of Agricultural and Food Chemistry 2011, 59(8), 3641-3648. doi:10.1021/jf104601v
Zhang, X. –K.; Lan, Y. –B.; Zhu, B. –Q.; Xiang, X. –F.; Duan, C. –Q.; and Shi, Y., Changes in monosaccharides, organic acids and amino acids in Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography-mass spectrometry. Journal of the Science of Food and Agriculture 2018, 98(1), 104-112.
Zimmermann, S.; Gretzinger, S.; Zimmermann, P. K.; Bogsnes, A.; Hansson, M.; and Hubbuch, J., Cell Separation in Aqueous Two-Phase Systems – Influence of Polymer Molecular Weight and Tie-Line Length on the Resolution of Five Model Cell Lines. Biotechnology Journal 2018, 13(2), 1700250-n/a. doi:10.1002/biot.201700250.

電子全文 電子全文(網際網路公開日期:20220204)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔