|
[1]Laurichesse, S.; Avérous, L. Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 2014, 39, 1266-1290. [2]Marton, J. Lignin Structure and Reactions; Adv Chem, Washington DC: American Chemical Society, 1966. [3]Cherubini, F.; Stromman, A. H. Chemicals from lignocellulosic biomass: Opportunities, perspectives, and potential of biorefinery systems. Biofuels, Bioprod. Biorefin. 2011, 5, 548-561. [4]Chatel, G.; Rogers, R. D. Review: Oxidation of Lignin Using Ionic Liquids—An Innovative Strategy To Produce Renewable Chemicals. ACS Sustain. Chem. Eng. 2014, 2(3), 322-339. [5]Adler, E. Lignin chemistry-past, present and future. Wood Sci Technol. 1977, 11, 169–218. [6]Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C. Thermochemical conversion of lignin for fuels and chemicals: a review. Oil Gas Sci. Technol. 2013, 68, 753–763. [7]Chatel, G.; Rogers, R. D. Review: Oxidation of Lignin Using Ionic Liquids—An innovative strategy to produce renewable chemicals. ACS Sustain. Chem. Eng. 2014, 2, 322-339. [8]Pa, Q.-M.; Han, X.-G.; Bai, Y.-F.; Yang, J.-C. Advances in Physiology and Ecology Studies on Stored Non-Structure Carbohydrates in Plants. Chinese Bull. Botany. 2002, 19, 30-38. [9]Monica, E.; Göran, G.; Gunnar, H. Wood Chem. Technol. Deutsche Nationalbibliothek: Germany, 2009, 1. [10]Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 2013, 21, 506–523. [11]Galkin, M. V.; Samec, J. S. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. Chem. Sus. Chem. 2016, 9, 1544-1558. [12]Sun, R. C.; Tomkinson, J. Fractional separation and physico-chemical analysis of lignins from the black liquor of oil palm trunk fibre pulping Sep. Purif. Technol. 2001, 24(3), 529–539. [13]Mussatto, S. I.; Fernandes, M.; Roberto, I. C. Lignin recovery from brewer’s spent grain black liquor. Carbohyd. Polym. 2007, 70, 218–223. [14]Kilpeläinen, I.; Xie, H.; King, A.; Granstrom, M.; Heikkinen, S.; Argyropoulos, D. S. Dissolution of wood in ionic liquids. J. Agric. Food Chem. 2007, 55, 9142–9148. [15]Zhang, K.; Li, H.; Xiao, L.-P.; Wang, B.; Sun, R.-C.; Song, G. Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresour. Technol. 2019, 285, 121335 [16]Sasaki, K.; Okamoto, M.; Shirai, T.; Tsuge, Y.; Teramura, H.; Sasaki, D.; Kawaguchi, H.; Hasunuma, T.; Ogino, C.; Matsuda, F.; Kikuchi, J.; Kondo, A. Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnol. Biofuels 2015, 8, 88 [17]Colyar, K. R.; Pellegrino, J.; Kadam, K. Fractionation of pre-hydrolysis products from lignocellulosic biomass by an ultrafiltration ceramic tubular membrane. Sep. Sci. Technol. 2008, 43, 447–476. [18]Wei, P.; Cheng, L.-H.; Zhang, L.; Xu, X.-H.; Chen, H.-L.; Gao, C.-J. A review of membrane technology for bioethanol production. Renew. Sust. Energ. Rev. 2014, 30, 388–400 [19]Toledano, A.; García, A.; Mondragon, I.; Labidi, J. Lignin separation and fractionation by ultrafiltration. Sep. Purif. Technol. 2010, 71, 38–43 [20]González Alriols, M.; García, A.; Llano-ponte, R.; Labidi, J. Combined organosolv and ultrafiltration lignocellulosic biorefinery process Chem. Eng. J. 2010, 157, 113–120 [21]Ferna´ ndez-Rodrı´guez, J.; Erdocia, X.; Herna´ ndez-Ramos, F.; Alriols, M. G.; Labidi, J. Lignin Separation and Fractionation by Ultrafiltration Separation of Functional Molecules in Food by Membrane Technology, 2019, Chapter 7. [22]Toledano, A.; Serrano, L.; García, A.; Mondragon, I.; Labidi, J Comparative study of lignin fractionation by ultrafiltration and selective precipitation Chem. Eng. J. 2010, 157, 93–99. [23]Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S. F.; Beckham, G. T.; Sels, B.F. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852-908 [24]Saito, T.; Perkins, J. H.; Jackson, D. C.; Trammel, N. E.; Hunt, M. A.; Naskar, A. K. Development of lignin-based polyurethane thermoplastics. RSC Adv. 2013, 3, 21832 [25]Jeon, J. W.; Zhang, L.; Lutkenhaus, J. L.; Laskar, D. D.; Lemmon, J. P.; Choi, D.; Nandasiri, M. I.; Hashmi, A.; Xu, J.; Motkuri, R. K.; Fernandez, C. A.; Liu, J.; Tucker, M. P.; McGrail, P. B.; Yang, B.; Nune, S. K. Omsai Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. Chem. Sus. Chem. 2015, 8, 428–432 [26]Aminzadeh, S.; Lauberts, M.; Dobele, G.; Ponomarenko, J.; Mattsson, T.; Lindstroem, M. E.; Sevastyanova, O. Membrane filtration of kraft lignin: Structural characteristics and antioxidant activity of the low-molecular-weight fraction. Ind. Crops Prod. 2018, 112, 200-209. [27]Wang, H.; Lin, W.-S.; Qiu, X.-Q.; Fu, F.B.; Zhong, R.-S.; Liu, W.-F.; Yang, D.-J. In Situ Synthesis of Flowerlike Lignin/ZnO Composite with Excellent UV-Absorption Properties and Its Application in Polyurethane. ACS Sustain. Chem. Eng. 2018, 6, 3696-3705. [28]Ferrer, A.; Vega, A.; Rodríguez, L.; Jiménez, L. Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresour. Technol. 2013, 132, 115–20. [29]Doherty, W. O. S.; Mousavioun, P; Fellows, C. M. Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 2011, 33, 259–276. [30]Prinsen, P.; Rencoret, J.; Gutiérrez, A.; Liitiä, T.; Tamminen, T.; Colodette, J. L.; Álvaro Berbis, Jiménez-Barbero, J.; Martínez, Á.T.; del Río, J. C. Modification of the lignin structure during alkaline delignification of eucalyptus wood by kraft, soda-AQ, and soda-O2 cooking. Ind. Eng. Chem. Res. 2013, 52, 15702–15712. [31]Ouyang, X.; Huang, X.; Ruan, T.; Qiu, X. Microwave-assisted oxidative digestion of lignin with hydrogen peroxide for TOC and color removal. Water Sci. Technol. 2015, 71, 390–396. [32]Zhang, B.; Huang, H.; Ramaswamy, S., Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol. 2008, 147, 119-131. [33]Williams, T.; Hosur, M.; Theodore, M.; Netravail, A.; Rangari, V.; Jeelani, S. Time effects on morphology and bonding ability in mercerized natural fibers for composite reinforcement. Int. J. Polym. Sci. 2011, 10, 61-69. [34]Ek, M.; Gellerstedt, G.; Henriksson, G. Pulping Chemistry and Technology; KTH Royal Institute of Technology: Stockholm, 2009. [35]Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook. CRC Press, Inc. Boca Raton FL 2007, Chapter 1 [36]Hansen, C. M. The universality of the solubility parameter. Ind. Eng. Chem. Prod. Res. Dev. 1969, 8, 2. [37]Guilherme Cañete Vebber, Patricia Pranke, Cláudio Nunes Pereira Calculating hansen solubility parameters of polymers with genetic algorithms. J. Appl. Polym. Sci. 2014, DOI: 10.1002/APP.39696 [38]Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass- laboratory analytical procedure (LAP). National Renewable Energy Laboratory (NREL), 2011. [39]Yasuda, S.; Murase, N. Chemical structures of sulfuric acid lignin. Holzforschung 1995, 49, 418-422. [40]Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y.-T.; Oatley- Radcliffe, D. L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226-254. [41]Ng, L. Y.; Mohammad, A .W.; Ng, C. Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Adv. Colloid Interface Sci. 2013, 198, 85-107. [42]Petersen, R. J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 83, 81-150. [43]Shamsuddin, N.; Das, D. B.; Starov, V. M. Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow, Chem. Eng. J. 2015, 276, 331-339. [44]Liang, R.; Hu, A.; Hatat-Fraile, M.; Zhou, N. Fundamentals on adsorption, membrane filtration, and advanced oxidation processes for water treatment. Springer, Berlin, 2014, chapter 1, 1–45. [45]Liu, J.; Yuan, J.; Ji, Z.; Wang, B.; Hao, Y.; Guo, X. Concentrating brine from seawater desalination process by nanofiltration-electrodialysis integrated membrane technology. Desalination 2016, 390, 53-61. [46]Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y.-T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226-254. [47]González, A. P.; Ibáñez, R.; Gómez, P.; Urtiaga, A. M.; Ortiz, I.; Irabien, J.A. Nanofiltration separation of polyvalent and monovalent anions in desalination brines. J. Membr. Sci. 2015, 473, 16-27. [48]Pal, A.; Dey, T. K.; Bindal, R. C. Intrinsic dependence of hydrophilic and electrokinetic features of positively charged thin film composite nanofiltration membranes on molecular weights of poly(ethyleneimine)s, Polymer 2016, 93, 99-114. [49]Xu, Y.-C.; Wang, Z.-X.; Cheng, X.-Q.; Xiao, Y.-C.; Shao, L. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment. Chem. Eng. J. 2016, 303, 555-564. [50]Teixeira, M.; Rosa, M.; Nystrom, M. The role of membrane charge on nanofiltration performance. J. Membr. Sci. 2005, 265, 160-166. [51]Zhou, Y.; Yu, S.; Gao, C.; Feng, X. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance. Sep. Purif. Technol. 2009, 66, 287-294. [52]Abuhabib, A. A.; Mohammad, A. W.; Hilal, N.; Rahman, R. A.; Shafie, A. H. Nanofiltration membrane modification by UV grafting for salt rejection and fouling resistance improvement for brackish water desalination. Desalination 2012, 295, 16-25. [53]Mohammad, A. W.; Teow, Y. H.; Ang, W. L; Chung, Y.-T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects, Desalination 2015, 356, 226-254. [54]Paul, M.; Jons, S. D. Chemistry and fabrication of polymeric nanofiltration membranes: A review. Polymer 2016, 103, 417-456. [55]Gilardi, G.; Cass, A. E. G. Associative and colloidal behavior of lignin and implications for its biodegradation in vitro. Langmuir 1993, 9, 1721-1726. [56]Vainio, U.; Maximova, N.; Hortling, B.; Laine, J.; Stenius, P.; Simola, L. K.; Gravitis, J.; Serimaa, R. Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 2004, 20, 9736-9744. [57]Dagnino, E.; Felissia, F.; Chamorro, E.; Area, M. Optimization of the soda-ethanol delignification stage for a rice husk biorefinery. Ind. Crops Prod. 2017, 97, 156-165. [58]Chen, W.-H.; Hsu, M.-H.; Wu, A.-Y.; Hwang, W.-S. Efficient extraction and recovery of xylan and lignin from rice straw using a flow-through hydrothermal system. J. Taiwan Inst. Chem. Eng. 2017, 000, 1-7. [59]Kamide, K. Cellulose in Aqueous Sodium Hydroxide. In: Cellulose and Cellulose Derivatives. Amsterdam AMS: Elsevier, 2005, 445–548. [60]Kunze, J.; Fink, H.‐P. Structural Changes and Activation of Cellulose by Caustic Soda Solution with Urea. Macromol. Symp. 2005, 223, 175-187. [61]Ross, K.; Mazza, G. Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. Int. J. Mol. Sci. 2010, 11, 4035-4050. [62]Crestini, C.; Argyropoulos, D. S. Structural analysis of wheat straw lignin by quantitative 31P and 2D NMR spectroscopy. The occurrence of ester bonds and α-O-4 substructures. J. Agric. Food Chem. 1997, 45, 1212-1219. [63]Ralph, J.; Hatfield, R. D.; Quideau, S.; Helm, R. F.; Grabber, J. H.; Jung, H. -J. G. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448– 9456 [64]Buranov, A. U.; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crop. Prod. 2008, 28, 237–259. [65]Kunze, J.; Fink, H. P. Structural Changes and Activation of Cellulose by Caustic Soda Solution with Urea. Macromol. Symp. 2005, 223, 175-187. [66]del Río, C. J.; Rencoret, J.; Prinsen, P.; Martínez T., Á.; Ralph, J.; Gutiérrez, A. Structural Characterization of Wheat Straw Lignin as Revealed by Analytical Pyrolysis, 2D-NMR, and Reductive Cleavage Methods. J. Agric. Food Chem. 2012, 60, 5922-5935 [67]Sun, R.-C.; Sun, X.-F.; Wang, S.-Q.; Zhu, W.; Wang, X.-Y. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind. Crops Prod. 2002, 15, 179– 188 [68]Crestini, C.; Argyropoulos, D. S. Structural analysis of wheat straw lignin by quantitative 31P and 2D NMR spectroscopy. The occurrence of ester bonds and α-O-4 substructures. J. Agric. Food Chem. 1997, 45, 1212-1219 [69]Ralph, J.; Hatfield, R. D.; Quideau, S.; Helm, R. F.; Grabber, J. H.; Jung, H. -J. G. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448– 9456 [70]Anvar U. Buranov, G. Mazza Lignin in straw of herbaceous crops. Ind. Crop. Prod. 2008, 28, 237–259. [71]Takeda, Y.; Koshiba, T.; Tobimatsu, Y.; Suzuki, S.; Murakami, S.; Yamamura, M.; Rahman, M.; Takano, T.; Hattori, T.; Sakamoto, M.; Umezawa, T. Regulation of coniferaldehyde 5-hydroxylase expression to modulate cell wall lignin structure in rice. Planta, 2017, 246, 337–349 [72]Watkins, D.; Nuruddin, M. D.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and characterization of lignin from different biomass resources J. Mater. Res. Technol. 2015, 4(1), 26–32 [73]Yang, H.; Yan, R.; Chen, H. Lee, D.-H.; Zheg, C. Characteristics of hemicellulose, cellulose, and lignin pyrolysis Fuel, 2007, 86, 1781-1788 [74]Tejado, A.; Pena, C.; Labidi, J.; Echeverria, J. M.; Mondragon, I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 2007, 98,1655-1663. [75]El-Saied, H.; Nada, A. M. A. The thermal behaviour of lignin from wasted black pulping liquors. Polym. Degrad. Stabil., 1993, 40, 417-421. [76]Sun, R. C.; Tomlinson, J.; Jones G. L. Fractional characterization of ash-AQ lignin by successive extraction with organic solvent from oil pam EFB fibre. Polym. Degrad. Stabil., 2000, 68,111-119
|