跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佑玲
研究生(外文):CHEN, YU-LING
論文名稱:稻稈生質精煉殘餘物中木質素的萃取與薄膜分離之研究
論文名稱(外文):Lignin Extraction and Fractionation from Rice Straws Biorefinery Residues
指導教授:孫一明
指導教授(外文):SUN, YI-MING
口試委員:盧信安吳和生王大銘吳嘉文
口試委員(外文):LU, XIN-ANWU, HO-SHINGWANG, DA-MINGWU, CHIA-WEN
口試日期:2020-01-15
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:123
中文關鍵詞:棕色固渣木質素解聚萃取放大製程超過濾
外文關鍵詞:brown solidlignindepolymerization extractionpilot-scale processultrafiltration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XII
第一章、緒論 1
1.1、研究背景 1
1.2、木質素 2
1.3、纖維素與半纖維素 4
1.4、木質纖維素於生質精煉產製酒精 5
1.5、棕色固渣 6
1.6、萃取木質素之前處理方法 6
1.6.1物理方法 7
1.6.2化學方法 7
1.7木質素之超過濾分餾 8
1.8研究範疇與架構 9
第二章、文獻回顧與研究原理 10
2.1 紙漿工業之木質素 10
2.1.1 卡夫木質素 10
2.1.2有機溶劑木質素 11
2.1.3蘇打木質素 11
2.1.3.1蘇打法萃取 (soda process)木質素之反應機制 12
2.1.3.2脫木質素反應 13
2.1.3.3 Hansen溶解度參數 (Hansen solubility parameter) 14
2.2 木質素含量分析方法 19
2.2.1 NREL之木質素含量測定 19
2.2.2酸可溶性木質素含量分析 19
2.2.3酸不可溶性木質素含量分析 20
2.2.4灰分含量分析 20
2.3 薄膜分離技術 21
2.3.1 道南效應 (donnan exclusion) 23
2.3.2 濃度極化效應 (concentration polarization) 24
2.3.3 結垢現象 (fouling effect) 24
2.3.4 分子篩效應 (size exclusion) 25
第三章 材料與實驗方法 26
3.1實驗藥品 26
3.2 實驗設備與器材 26
3.3 蘇打法萃取之放大製程 29
3.4 酸沉澱之木質素萃取步驟 30
3.5 木質素吸收係數分析 32
3.5.1 紫外-可見分光光譜儀 (UV-Vis) 32
3.6 木質素分析方法 35
3.6.1 酸可溶性木質素含量分析 35
3.6.2 酸不溶性木質素含量分析 37
3.7 產率以及回收率的計算 38
3.7.1木質素粗產率的計算 38
3.7.2木質素產率的計算 39
3.7.3木質素回收率的計算 39
3.8 木質素之結構鑑定與性質分析 40
3.8.1 霍式紅外線光譜儀 (FTIR) 40
3.8.2 熱重分析儀 (TGA) 40
3.8.3 膠體層析儀 (GPC) 40
3.8.4 二維異核核磁共振儀 (2D HSQC NMR) 41
3.9 膜材分析 42
3.9.1 表面型態觀察 (FE-SEM) 42
3.9.2 表面電位測試 (zeta potential) 42
3.10 木質素分餾實驗 44
3.10.1 超過濾實驗於端點系統之操作步驟 44
3.10.2 超過濾實驗於掃流式系統之操作步驟 48
第四章 結果與討論 50
4.1 稻稈與棕色固渣之含量分析 50
4.2 棕色固渣中木質素萃取效果之影響 52
4.2.1 NaOH濃度對木質素萃取效果之影響 52
4.2.2 固液比對木質素萃取效果之影響 58
4.2.3 反應溫度對木質素蘇打法萃取效果之影響 63
4.2.4 反應時間對木質素蘇打法萃取效果之影響 68
4.3 放大製程 (pilot scale)中木質素萃取效果之影響 73
4.3.1 助溶劑對木質素萃取效果之影響與小批次結果之比較 73
4.3.2 放大製程之木質素分餾實驗 (lignin fractionation) 78
4.3.2.1 不同膜材於端點過濾系統 (dead-end system)之影響 78
4.3.2.2 不同TMP於掃流式過濾系統 (cross-flow system)之影響 82
4.4萃取木質素之化學結構鑑定 86
4.4.1 FTIR鑑定 86
4.4.2 2D-NMR分析鑑定 88
4.4.3熱重分析 93
第五章 結論 96
Reference 98

[1]Laurichesse, S.; Avérous, L. Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 2014, 39, 1266-1290.
[2]Marton, J. Lignin Structure and Reactions; Adv Chem, Washington DC: American Chemical Society, 1966.
[3]Cherubini, F.; Stromman, A. H. Chemicals from lignocellulosic biomass: Opportunities, perspectives, and potential of biorefinery systems. Biofuels, Bioprod. Biorefin. 2011, 5, 548-561.
[4]Chatel, G.; Rogers, R. D. Review: Oxidation of Lignin Using Ionic Liquids—An Innovative Strategy To Produce Renewable Chemicals. ACS Sustain. Chem. Eng. 2014, 2(3), 322-339.
[5]Adler, E. Lignin chemistry-past, present and future. Wood Sci Technol. 1977, 11, 169–218.
[6]Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C. Thermochemical conversion of lignin for fuels and chemicals: a review. Oil Gas Sci. Technol. 2013, 68, 753–763.
[7]Chatel, G.; Rogers, R. D. Review: Oxidation of Lignin Using Ionic Liquids—An innovative strategy to produce renewable chemicals. ACS Sustain. Chem. Eng. 2014, 2, 322-339.
[8]Pa, Q.-M.; Han, X.-G.; Bai, Y.-F.; Yang, J.-C. Advances in Physiology and Ecology Studies on Stored Non-Structure Carbohydrates in Plants. Chinese Bull. Botany. 2002, 19, 30-38.
[9]Monica, E.; Göran, G.; Gunnar, H. Wood Chem. Technol. Deutsche Nationalbibliothek: Germany, 2009, 1.
[10]Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 2013, 21, 506–523.
[11]Galkin, M. V.; Samec, J. S. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. Chem. Sus. Chem. 2016, 9, 1544-1558.
[12]Sun, R. C.; Tomkinson, J. Fractional separation and physico-chemical analysis of lignins from the black liquor of oil palm trunk fibre pulping Sep. Purif. Technol. 2001, 24(3), 529–539.
[13]Mussatto, S. I.; Fernandes, M.; Roberto, I. C. Lignin recovery from brewer’s spent grain black liquor. Carbohyd. Polym. 2007, 70, 218–223.
[14]Kilpeläinen, I.; Xie, H.; King, A.; Granstrom, M.; Heikkinen, S.; Argyropoulos, D. S. Dissolution of wood in ionic liquids. J. Agric. Food Chem. 2007, 55, 9142–9148.
[15]Zhang, K.; Li, H.; Xiao, L.-P.; Wang, B.; Sun, R.-C.; Song, G. Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresour. Technol. 2019, 285, 121335
[16]Sasaki, K.; Okamoto, M.; Shirai, T.; Tsuge, Y.; Teramura, H.; Sasaki, D.; Kawaguchi, H.; Hasunuma, T.; Ogino, C.; Matsuda, F.; Kikuchi, J.; Kondo, A. Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnol. Biofuels 2015, 8, 88
[17]Colyar, K. R.; Pellegrino, J.; Kadam, K. Fractionation of pre-hydrolysis products from lignocellulosic biomass by an ultrafiltration ceramic tubular membrane. Sep. Sci. Technol. 2008, 43, 447–476.
[18]Wei, P.; Cheng, L.-H.; Zhang, L.; Xu, X.-H.; Chen, H.-L.; Gao, C.-J. A review of membrane technology for bioethanol production. Renew. Sust. Energ. Rev. 2014, 30, 388–400
[19]Toledano, A.; García, A.; Mondragon, I.; Labidi, J. Lignin separation and fractionation by ultrafiltration. Sep. Purif. Technol. 2010, 71, 38–43
[20]González Alriols, M.; García, A.; Llano-ponte, R.; Labidi, J. Combined organosolv and ultrafiltration lignocellulosic biorefinery process Chem. Eng. J. 2010, 157, 113–120
[21]Ferna´ ndez-Rodrı´guez, J.; Erdocia, X.; Herna´ ndez-Ramos, F.; Alriols, M. G.; Labidi, J. Lignin Separation and Fractionation by Ultrafiltration Separation of Functional Molecules in Food by Membrane Technology, 2019, Chapter 7.
[22]Toledano, A.; Serrano, L.; García, A.; Mondragon, I.; Labidi, J Comparative study of lignin fractionation by ultrafiltration and selective precipitation Chem. Eng. J. 2010, 157, 93–99.
[23]Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S. F.; Beckham, G. T.; Sels, B.F. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852-908
[24]Saito, T.; Perkins, J. H.; Jackson, D. C.; Trammel, N. E.; Hunt, M. A.; Naskar, A. K. Development of lignin-based polyurethane thermoplastics. RSC Adv. 2013, 3, 21832
[25]Jeon, J. W.; Zhang, L.; Lutkenhaus, J. L.; Laskar, D. D.; Lemmon, J. P.; Choi, D.; Nandasiri, M. I.; Hashmi, A.; Xu, J.; Motkuri, R. K.; Fernandez, C. A.; Liu, J.; Tucker, M. P.; McGrail, P. B.; Yang, B.; Nune, S. K. Omsai Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. Chem. Sus. Chem. 2015, 8, 428–432
[26]Aminzadeh, S.; Lauberts, M.; Dobele, G.; Ponomarenko, J.; Mattsson, T.; Lindstroem, M. E.; Sevastyanova, O. Membrane filtration of kraft lignin: Structural characteristics and antioxidant activity of the low-molecular-weight fraction. Ind. Crops Prod. 2018, 112, 200-209.
[27]Wang, H.; Lin, W.-S.; Qiu, X.-Q.; Fu, F.B.; Zhong, R.-S.; Liu, W.-F.; Yang, D.-J. In Situ Synthesis of Flowerlike Lignin/ZnO Composite with Excellent UV-Absorption Properties and Its Application in Polyurethane. ACS Sustain. Chem. Eng. 2018, 6, 3696-3705.
[28]Ferrer, A.; Vega, A.; Rodríguez, L.; Jiménez, L. Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresour. Technol. 2013, 132, 115–20.
[29]Doherty, W. O. S.; Mousavioun, P; Fellows, C. M. Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 2011, 33, 259–276.
[30]Prinsen, P.; Rencoret, J.; Gutiérrez, A.; Liitiä, T.; Tamminen, T.; Colodette, J. L.; Álvaro Berbis, Jiménez-Barbero, J.; Martínez, Á.T.; del Río, J. C. Modification of the lignin structure during alkaline delignification of eucalyptus wood by kraft, soda-AQ, and soda-O2 cooking. Ind. Eng. Chem. Res. 2013, 52, 15702–15712.
[31]Ouyang, X.; Huang, X.; Ruan, T.; Qiu, X. Microwave-assisted oxidative digestion of lignin with hydrogen peroxide for TOC and color removal. Water Sci. Technol. 2015, 71, 390–396.
[32]Zhang, B.; Huang, H.; Ramaswamy, S., Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol. 2008, 147, 119-131.
[33]Williams, T.; Hosur, M.; Theodore, M.; Netravail, A.; Rangari, V.; Jeelani, S. Time effects on morphology and bonding ability in mercerized natural fibers for composite reinforcement. Int. J. Polym. Sci. 2011, 10, 61-69.
[34]Ek, M.; Gellerstedt, G.; Henriksson, G. Pulping Chemistry and Technology; KTH Royal Institute of Technology: Stockholm, 2009.
[35]Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook. CRC Press, Inc. Boca Raton FL 2007, Chapter 1
[36]Hansen, C. M. The universality of the solubility parameter. Ind. Eng. Chem. Prod. Res. Dev. 1969, 8, 2.
[37]Guilherme Cañete Vebber, Patricia Pranke, Cláudio Nunes Pereira Calculating hansen solubility parameters of polymers with genetic algorithms. J. Appl. Polym. Sci. 2014, DOI: 10.1002/APP.39696
[38]Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass- laboratory analytical procedure (LAP). National Renewable Energy Laboratory (NREL), 2011.
[39]Yasuda, S.; Murase, N. Chemical structures of sulfuric acid lignin. Holzforschung 1995, 49, 418-422.
[40]Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y.-T.; Oatley- Radcliffe, D. L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226-254.
[41]Ng, L. Y.; Mohammad, A .W.; Ng, C. Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Adv. Colloid Interface Sci. 2013, 198, 85-107.
[42]Petersen, R. J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 83, 81-150.
[43]Shamsuddin, N.; Das, D. B.; Starov, V. M. Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow, Chem. Eng. J. 2015, 276, 331-339.
[44]Liang, R.; Hu, A.; Hatat-Fraile, M.; Zhou, N. Fundamentals on adsorption, membrane filtration, and advanced oxidation processes for water treatment. Springer, Berlin, 2014, chapter 1, 1–45.
[45]Liu, J.; Yuan, J.; Ji, Z.; Wang, B.; Hao, Y.; Guo, X. Concentrating brine from seawater desalination process by nanofiltration-electrodialysis integrated membrane technology. Desalination 2016, 390, 53-61.
[46]Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y.-T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226-254.
[47]González, A. P.; Ibáñez, R.; Gómez, P.; Urtiaga, A. M.; Ortiz, I.; Irabien, J.A. Nanofiltration separation of polyvalent and monovalent anions in desalination brines. J. Membr. Sci. 2015, 473, 16-27.
[48]Pal, A.; Dey, T. K.; Bindal, R. C. Intrinsic dependence of hydrophilic and electrokinetic features of positively charged thin film composite nanofiltration membranes on molecular weights of poly(ethyleneimine)s, Polymer 2016, 93, 99-114.
[49]Xu, Y.-C.; Wang, Z.-X.; Cheng, X.-Q.; Xiao, Y.-C.; Shao, L. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment. Chem. Eng. J. 2016, 303, 555-564.
[50]Teixeira, M.; Rosa, M.; Nystrom, M. The role of membrane charge on nanofiltration performance. J. Membr. Sci. 2005, 265, 160-166.
[51]Zhou, Y.; Yu, S.; Gao, C.; Feng, X. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance. Sep. Purif. Technol. 2009, 66, 287-294.
[52]Abuhabib, A. A.; Mohammad, A. W.; Hilal, N.; Rahman, R. A.; Shafie, A. H. Nanofiltration membrane modification by UV grafting for salt rejection and fouling resistance improvement for brackish water desalination. Desalination 2012, 295, 16-25.
[53]Mohammad, A. W.; Teow, Y. H.; Ang, W. L; Chung, Y.-T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects, Desalination 2015, 356, 226-254.
[54]Paul, M.; Jons, S. D. Chemistry and fabrication of polymeric nanofiltration membranes: A review. Polymer 2016, 103, 417-456.
[55]Gilardi, G.; Cass, A. E. G. Associative and colloidal behavior of lignin and implications for its biodegradation in vitro. Langmuir 1993, 9, 1721-1726.
[56]Vainio, U.; Maximova, N.; Hortling, B.; Laine, J.; Stenius, P.; Simola, L. K.; Gravitis, J.; Serimaa, R. Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 2004, 20, 9736-9744.
[57]Dagnino, E.; Felissia, F.; Chamorro, E.; Area, M. Optimization of the soda-ethanol delignification stage for a rice husk biorefinery. Ind. Crops Prod. 2017, 97, 156-165.
[58]Chen, W.-H.; Hsu, M.-H.; Wu, A.-Y.; Hwang, W.-S. Efficient extraction and recovery of xylan and lignin from rice straw using a flow-through hydrothermal system. J. Taiwan Inst. Chem. Eng. 2017, 000, 1-7.
[59]Kamide, K. Cellulose in Aqueous Sodium Hydroxide. In: Cellulose and Cellulose Derivatives. Amsterdam AMS: Elsevier, 2005, 445–548.
[60]Kunze, J.; Fink, H.‐P. Structural Changes and Activation of Cellulose by Caustic Soda Solution with Urea. Macromol. Symp. 2005, 223, 175-187.
[61]Ross, K.; Mazza, G. Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. Int. J. Mol. Sci. 2010, 11, 4035-4050.
[62]Crestini, C.; Argyropoulos, D. S. Structural analysis of wheat straw lignin by quantitative 31P and 2D NMR spectroscopy. The occurrence of ester bonds and α-O-4 substructures. J. Agric. Food Chem. 1997, 45, 1212-1219.
[63]Ralph, J.; Hatfield, R. D.; Quideau, S.; Helm, R. F.; Grabber, J. H.; Jung, H. -J. G. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448– 9456
[64]Buranov, A. U.; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crop. Prod. 2008, 28, 237–259.
[65]Kunze, J.; Fink, H. P. Structural Changes and Activation of Cellulose by Caustic Soda Solution with Urea. Macromol. Symp. 2005, 223, 175-187.
[66]del Río, C. J.; Rencoret, J.; Prinsen, P.; Martínez T., Á.; Ralph, J.; Gutiérrez, A. Structural Characterization of Wheat Straw Lignin as Revealed by Analytical Pyrolysis, 2D-NMR, and Reductive Cleavage Methods. J. Agric. Food Chem. 2012, 60, 5922-5935
[67]Sun, R.-C.; Sun, X.-F.; Wang, S.-Q.; Zhu, W.; Wang, X.-Y. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind. Crops Prod. 2002, 15, 179– 188
[68]Crestini, C.; Argyropoulos, D. S. Structural analysis of wheat straw lignin by quantitative 31P and 2D NMR spectroscopy. The occurrence of ester bonds and α-O-4 substructures. J. Agric. Food Chem. 1997, 45, 1212-1219
[69]Ralph, J.; Hatfield, R. D.; Quideau, S.; Helm, R. F.; Grabber, J. H.; Jung, H. -J. G. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448– 9456
[70]Anvar U. Buranov, G. Mazza Lignin in straw of herbaceous crops. Ind. Crop. Prod. 2008, 28, 237–259.
[71]Takeda, Y.; Koshiba, T.; Tobimatsu, Y.; Suzuki, S.; Murakami, S.; Yamamura, M.; Rahman, M.; Takano, T.; Hattori, T.; Sakamoto, M.; Umezawa, T. Regulation of coniferaldehyde 5-hydroxylase expression to modulate cell wall lignin structure in rice. Planta, 2017, 246, 337–349
[72]Watkins, D.; Nuruddin, M. D.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and characterization of lignin from different biomass resources J. Mater. Res. Technol. 2015, 4(1), 26–32
[73]Yang, H.; Yan, R.; Chen, H. Lee, D.-H.; Zheg, C. Characteristics of hemicellulose, cellulose, and lignin pyrolysis Fuel, 2007, 86, 1781-1788
[74]Tejado, A.; Pena, C.; Labidi, J.; Echeverria, J. M.; Mondragon, I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 2007, 98,1655-1663.
[75]El-Saied, H.; Nada, A. M. A. The thermal behaviour of lignin from wasted black pulping liquors. Polym. Degrad. Stabil., 1993, 40, 417-421.
[76]Sun, R. C.; Tomlinson, J.; Jones G. L. Fractional characterization of ash-AQ lignin by successive extraction with organic solvent from oil pam EFB fibre. Polym. Degrad. Stabil., 2000, 68,111-119

電子全文 電子全文(網際網路公開日期:20250122)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top