跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬畢卡
研究生(外文):Bikash Chandra Mallick
論文名稱:以原子層還原和胺化技術調節氧化石墨烯和石墨烯量子點之電學和光學性質
論文名稱(外文):Tuning Electrical and Optical Properties of Graphene Oxide and Graphene Quantum Dot by Atomic Layer Reduction and Amidation Technique
指導教授:尹庚鳴謝建德謝建德引用關係
指導教授(外文):Yin, Ken-MingHsieh, Chien-Te
口試委員:蘇清源胡哲嘉陳金銘洪逸明
口試委員(外文):SU, CHING-YUANHU, CHECHIACHEN, JINMINGHUNG, I-MING
口試日期:2020-01-15
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:4
中文關鍵詞:原子層沉積原子層還原原子層胺化光學帶隙氧化石墨烯石墨烯量子點
外文關鍵詞:Atomic Layer depositionAtomic Layer ReductionAtomic Layer AmidationOptical BandgapGraphene OxideGraphene Quantum Dots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要………..……………………………………………………………………….......i
Abstract..................................ii
Acknowledgement………………………………………………………………………iii
Outline………………………………………………………………………………….....v
List of tables ………………………………………………………………………......vii
List of figures………………………………………………………………………….viii
Chapter 1.
Introduction
1.1 Preface.........................................1
1.2 Motivation and object...............................6
Chapter 2.
Literature Review
2.1 Synopsis of atomic layer deposition (ALD)……………………………………...8
2.2 Overview of ALD………………………………………………………………...8
2.3 ALD of metals…………………………………………………………………..10
2.3.1 ALD of Pt…………………………………………………………….…10
2.3.2 ALD of Pd……………………………………………………………....14
2.3.3 ALD of Cu……………………………...……………………………….17
2.4 ALD of metal oxide……………………………………………………………..20
2.4.1 ALD of nickel oxide (NiO)..……………………………………………20
2.4.2 ALD of alumina (Al2O3)………………………………………………..23
2.4.3 ALD of copper oxide (CuO)……………………………………………26
2.5 ALD of 2D material…………………………………………………………….28
2.5.1 ALD of MoS2…………………………………………………………...28
2.5.2 ALD of WS2 and WSe2…………………………………………………30
2.6 ALD of 3D material…………………………………………………………….32
2.7 Conclusions……………………………………………………………………..34
Chapter 3.
Atomic Layer Reduction (ALR)
3.1 Materials………………………………………………………………………...36
3.2 Instruments used………………………………………………………………...37
3.3 Experiment……………………………………………………………..........….38
3.4 Results and Discussion………………………………………………………….41
Chapter 4.
Atomic Layer Amidation (ALN)
4.1 Materials………………………………………………………………………...55
4.2 Instruments used………………………………………………………………...56
4.3 Experiment……………………...………………………………………………57
4.4 Results and discussion……………...…………………………………………...59

Chapter 5.
Atomic Layer Amidation (ALN) of Graphene Quantum Dots (GQD)
5.1 Introduction of GQD……………………………………………………………75
5.2 Materials………………………………………………………………………...76
5.3 Instruments used………………………………………………………………...77
5.4 Experiment……………………...………………………………………………78
5.5 Results and discussion…………………..………………………………………80
Chapter 6.
6.1 Summarisation….…………………………………………………………….....88
6.2 Future work…………………………………………………………………......89
References……………………………………………………………………………...91

1Wang, L., Travis, J.J., Cavanagh, A.S., Liu, X., Koenig, S.P., Huang, P.Y., George, S.M. & Bunch, J.S. (2012). Ultrathin oxide films by atomic layer deposition on graphene. Nano letters, 12(7), 3706.
2Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nature nanotechnology, 4(1), 25.
3Lei, Z., Lu, L., & Zhao, X. S. (2012). The electrocapacitive properties of graphene oxide reduced by urea. Energy & Environmental Science, 5(4), 6391-6399.
4Brodie, B. C (1859). On the atomic weight of graphite. Phil. Trans. R. Soc. Lond. A,
149, 249–259.

5Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature nanotechnology, 4(4), 217.

6Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228.

7Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nature chemistry, 2(12), 1015.

8Schultz, B.J., Dennis, R.V., Aldinger, J.P., Jaye, C., Wang, X., Fischer, D.A., Cartwright, A.N. & Banerjee, S. (2014). Rsc Advances, 4(2), 634.
9Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A.V., Peng, D.L., Zboril, R. & Varma, R.S. (2015). Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 44(21), 7540.

10Ahmed, B., Xia, C., & Alshareef, H. N. (2016). Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today, 11(2), 250.

11Meng, X., Wang, X., Geng, D., Ozgit-Akgun, C., Schneider, N., & Elam, J. W. (2017). Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Materials Horizons, 4(2), 133.

12Wang, X., & Yushin, G. (2015). Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy & Environmental Science, 8(7), 1889.

13Zardetto, V., Williams, B.L., Perrotta, A., Di Giacomo, F., Verheijen, M.A., Andriessen, R., Kessels, W.M.M. and Creatore, M. (2017). Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy & Fuels, 1(1), 30.

14O’Neill, B.J., Jackson, D.H., Lee, J., Canlas, C., Stair, P.C., Marshall, C.L., Elam, J.W., Kuech, T.F., Dumesic, J.A. & Huber, G.W. (2015). Catalyst design with atomic layer deposition. Acs Catalysis, 5(3), 1804.

15Johnson, R. W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials today, 17(5), 236-246.

16 Niinistö, L., Nieminen, M., Päiväsaari, J., Niinistö, J., & Putkonen, M. (2004). Physica Status Solid (A), 2017, 1443-1452.

17O’Neill, B.J., Jackson, D.H., Lee, J., Canlas, C., Stair, P.C., Marshall, C.L., Elam, J.W., Kuech, T.F., Dumesic, J.A. & Huber, G.W. (2015). Catalyst design with atomic layer deposition. Acs Catalysis, 5(3), 1804.

18Hsieh, C. T., & Teng, H. (2002). Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon, 40(5), 667.
19K. Kinoshita, Wiley. New York, 1988.
20Otake, Y., & Jenkins, R. G. (1993). Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon, 31(1), 109.
21Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A.V., Peng, D.L., Zboril, R. & Varma, R.S. (2015). Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 44(21), 7540.

22Ahmed, B., Xia, C., & Alshareef, H. N. (2016). Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today, 11(2), 250.

23Meng, X., Wang, X., Geng, D., Ozgit-Akgun, C., Schneider, N., & Elam, J. W. (2017). Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Materials Horizons, 4(2), 133.

24Wang, X., & Yushin, G. (2015). Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy & Environmental Science, 8(7), 1889.

25Zardetto, V., Williams, B.L., Perrotta, A., Di Giacomo, F., Verheijen, M.A., Andriessen, R., Kessels, W.M.M. & Creatore, M. (2017). Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy & Fuels, 1(1), 30.

26Wen, L., Zhou, M., Wang, C., Mi, Y., & Lei, Y. (2016). Nanoengineering energy conversion and storage devices via atomic layer deposition. Advanced Energy Materials, 6(23), 1600468.

27Guan, C., & Wang, J. (2016). Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Advanced Science, 3(10), 1500405.
28Suntola, T., & Antson, J. (1977). U.S. Patent No. 4,058,430. Washington, DC: U.S. Patent and Trademark Office.
29O’Neill, B. J., Jackson, D. H., Lee, J., Canlas, C., Stair, P. C., Marshall, C. L., ... & Huber, G. W. (2015). Catalyst design with atomic layer deposition. ACS Catalysis, 5(3), 1804.

30Lu, J., Elam, J. W., & Stair, P. C. (2016). Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surface Science Reports, 71(2), 410.

31Johnson, R. W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials today, 17(5), 236.

32Detavernier, C., Dendooven, J., Sree, S. P., Ludwig, K. F., & Martens, J. A. (2011). Tailoring nanoporous materials by atomic layer deposition. Chemical Society Reviews, 40(11), 5242.

33Aaltonen, T., Rahtu, A., Ritala, M., & Leskelä, M. (2003). Reaction mechanism studies on atomic layer deposition of ruthenium and platinum. Electrochemical and Solid State Letters, 6(9), C130.

34Jiang, X., Huang, H., Prinz, F. B., & Bent, S. F. (2008). Application of atomic layer deposition of platinum to solid oxide fuel cells. Chemistry of materials, 20(12), 3897-3905.

35Kessels, W. M. M., Knoops, H. C. M., Dielissen, S. A. F., Mackus, A. J. M., & Van de Sanden, M. C. M. (2009). Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy. Applied Physics Letters, 95(1), 013114.

36Lee, J. K., Kung, M. C., Trahey, L., Missaghi, M. N., & Kung, H. H. (2009). Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance lithium ion battery anodes. Chemistry of materials, 21(1), 6.
37Dendooven, J., Ramachandran, R.K., Devloo-Casier, K., Rampelberg, G., Filez, M., Poelman, H., Marin, G.B., Fonda, E. and Detavernier, C. (2013). Low-temperature atomic layer deposition of platinum using (methylcyclopentadienyl) trimethylplatinum and ozone. The Journal of Physical Chemistry C, 117(40), 20557.
38Dasgupta, N. P., Liu, C., Andrews, S., Prinz, F. B., & Yang, P. (2013). Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. Journal of the American Chemical Society, 135(35), 12932.
39Ren, Q.H., Zhang, Y., Lu, H.L., Chen, H.Y., Zhang, Y., Li, D.H., Liu, W.J., Ding, S.J., Jiang, A.Q. and Zhang, D.W. (2016). Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer. Nanotechnology, 27(16),165705.

40Liu, C., Wang, C. C., Kei, C. C., Hsueh, Y. C., & Perng, T. P. (2009). Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton‐exchange membrane fuel cells. Small, 5(13), 1535.

41Hsieh, C. T., Liu, Y. Y., Tzou, D. Y., & Chen, W. Y. (2012). Atomic layer deposition of platinum nanocatalysts onto three-dimensional carbon nanotube/graphene hybrid. The Journal of Physical Chemistry C, 116(51), 26735.
42Karasulu, B., Vervuurt, R. H., Kessels, W. M., & Bol, A. A. (2016). Continuous and ultrathin platinum films on graphene using atomic layer deposition: a combined computational and experimental study. Nanoscale, 8(47), 19829.

43Lee, H. B. R., Baeck, S. H., Jaramillo, T. F., & Bent, S. F. (2013). Growth of Pt nanowires by atomic layer deposition on highly ordered pyrolytic graphite. Nano letters, 13(2), 457.

44King, J.S., Wittstock, A., Biener, J., Kucheyev, S.O., Wang, Y.M., Baumann, T.F., Giri, S.K., Hamza, A.V., Baeumer, M. and Bent, S.F. (2008). Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. Nano letters, 8(8), 2405.

45Sun, S., Zhang, G., Gauquelin, N., Chen, N., Zhou, J., Yang, S., Chen, W., Meng, X., Geng, D., Banis, M.N. and Li, R. (2013). Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Scientific reports, 3(1), 1.

46Zhou, Y., King, D. M., Liang, X., Li, J., & Weimer, A. W. (2010). Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition. Applied Catalysis B: Environmental, 101(1-2), 54-60.

47Enterkin, J.A., Setthapun, W., Elam, J.W., Christensen, S.T., Rabuffetti, F.A., Marks, L.D., Stair, P.C., Poeppelmeier, K.R. and Marshall, C.L., 2011. Propane oxidation over Pt/SrTiO3 nanocuboids. Acs Catalysis, 1(6), pp.629-635.

48Goulas, A., & Van Ommen, J. R. (2013). Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure. Journal of Materials Chemistry A, 1(15), 4647-4650.

49Gould, T. D., Lubers, A. M., Corpuz, A. R., Weimer, A. W., Falconer, J. L., & Medlin, J. W. (2015). Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition. ACS Catalysis, 5(2), 1344-1352.

50Van Bui, H., Grillo, F., & Van Ommen, J. R. (2017). Atomic and molecular layer deposition: off the beaten track. Chemical Communications, 53(1), 45-71.

51Leskelä, M., & Ritala, M. (2003). Atomic layer deposition chemistry: recent developments and future challenges. Angewandte Chemie International Edition, 42(45), 5548.

52Bosch, R. H., Bloksma, F. L., Huijs, J. M., Verheijen, M. A., & Kessels, W. M. (2015) The Journal of Physical Chemistry C, 120(1), 750.

53Ting, C. C., Liu, C. H., Tai, C. Y., Hsu, S. C., Chao, C. S., & Pan, F. M. (2015). The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. Journal of Power Sources, 280, 166-172.

54Erkens, I. J. M., Verheijen, M. A., Knoops, H. C. M., Keuning, W., Roozeboom, F., & Kessels, W. M. M. (2017). Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches. The Journal of chemical physics, 146(5), 052818.

55Shi, M.L., Xu, J., Dai, Y.W., Cao, Q., Chen, L., Sun, Q.Q., Zhou, P., Ding, S.J. and Zhang, D.W.( 2017). Plasma enhanced atomic layer deposited platinum thin film on Si substrate with TMA pretreatment. Vacuum, 140, 139.
56Shi, M. L., Xu, J., Dai, Y. W., Cao, Q., Chen, L., Sun, Q. Q., & Zhang, D. W. (2016, May). In Next-Generation Electronics (ISNE), 2016 5th International Symposium on (pp. 1-2). IEEE.

57Ramachandran, R.K., Dendooven, J., Filez, M., Galvita, V.V., Poelman, H., Solano, E., Minjauw, M.M., Devloo-Casier, K., Fonda, E., Hermida-Merino, D. and Bras, W.( 2016). Atomic layer deposition route to tailor nanoalloys of noble and non-noble metals. ACS nano, 10(9), 8770.

58Senkevich, J., Tang, J., Rogers, F. D., Drotar, J. T., Jezewski, C., Lanford, W. A., Wang G.-C., & Lu, T.-M. Chemical Vapor Deposition, 103, 9, 258-264.

59Ten Eyck, G. A., Pimanpang, S., Bakhru, H., Lu, T. M., & Wang, G. C. (2006). Atomic layer deposition of Pd on an oxidized metal substrate. Chemical Vapor Deposition, 12(5), 290.

60Elam, J. W., Zinovev, A., Han, C. Y., Wang, H. H., Welp, U., Hryn, J. N., & Pellin, M. J. (2006). Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films, 515(4), 1664-1673.

61Weber, M. J., Mackus, A. J., Verheijen, M. A., van der Marel, C., & Kessels, W. M. (2012). Supported core/shell bimetallic nanoparticles synthesis by atomic layer deposition. Chemistry of Materials, 24(15), 2973.

62Weber, M. J., Mackus, A. J., Verheijen, M. A., Longo, V., Bol, A. A., & Kessels, W. M. (2014). Atomic layer deposition of high-purity palladium films from Pd (hfac)2 and H2 and O2 plasmas. The Journal of Physical Chemistry C, 118(16), 8702.

63Rikkinen, E., Santasalo-Aarnio, A., Airaksinen, S., Borghei, M., Viitanen, V., Sainio, J., Kauppinen, E.I., Kallio, T. & Krause, A.O.I. (2011). Atomic layer deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation. The Journal of Physical Chemistry C, 115(46), 23067.

64Yan, H., Cheng, H., Yi, H., Lin, Y., Yao, T., Wang, C., Li, J., Wei, S. and Lu, J. (2015). Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. Journal of the American chemical society, 137(33), 10484.

65Van Bui, H., Grillo, F., Helmer, R., Goulas, A., & van Ommen, J. R. (2016). Controlled growth of palladium nanoparticles on graphene nanoplatelets via scalable atmospheric pressure atomic layer deposition. The Journal of Physical Chemistry C, 120(16), 8832.

66Gong, T., Qin, L., Zhang, W., Wan, H., Lu, J., & Feng, H. (2015). Activated carbon supported palladium nanoparticle catalysts synthesized by atomic layer deposition: genesis and evolution of nanoparticles and tuning the particle size. The Journal of Physical Chemistry C, 119(21), 11544-11556.

67Jiang, Y., Chen, J., Zhang, J., Li, A., Zeng, Y., Zhou, F., Wang, G. & Wang, R. (2016). Ultralow loading palladium nanocatalysts prepared by atomic layer deposition on three-dimensional graphite-coated nickel foam to enhance the ethanol electro-oxidation reaction. RSC advances, 6(16), 13207.

68Feng, H., Elam, J. W., Libera, J. A., Setthapun, W., & Stair, P. C. (2010). Palladium catalysts synthesized by atomic layer deposition for methanol decomposition. Chemistry of Materials, 22(10), 3133.

69Feng, H., Libera, J. A., Stair, P. C., Miller, J. T., & Elam, J. W. (2011). Subnanometer palladium particles synthesized by atomic layer deposition. ACS Catalysis, 1(6), 665.

70Lu, Z., Kizilkaya, O., Kropf, A.J., Piernavieja-Hermida, M., Miller, J.T., Kurtz, R.L., Elam, J.W. & Lei, Y., 2016. Design and synthesis of model and practical palladium catalysts using atomic layer deposition. Catalysis Science & Technology, 6(18), 6845.

71Bai, Y., Wang, C., Zhou, X., Lu, J., & Xiong, Y. (2016). Atomic layer deposition on Pd nanocrystals for forming Pd-TiO2 interface toward enhanced CO oxidation. Progress in Natural Science: Materials International, 26(3), 289.

72Luo, X., Piernavieja-Hermida, M., Lu, J., Wu, T., Wen, J., Ren, Y., Miller, D., Fang, Z.Z., Lei, Y. and Amine, K. (2015). Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology, 26(16), 164003.

73Zhang, W., Huang, Y., Gong, T., & Feng, H. (2017). Activated carbon supported palladium-iron oxide catalysts fabricated by atomic layer deposition for hydrodechlorination of 1, 4-dichlorobenzene. Catalysis Communications, 93, 47.

74Hämäläinen, J., Ritala, M., & Leskelä, M. (2014). Atomic layer deposition of noble metals and their oxides. Chemistry of Materials, 26(1), 786-801.

75Ten Eyck, G.A., Senkevich, J.J., Tang, F., Liu, D., Pimanpang, S., Karaback, T., Wang, G.C., Lu, T.M., Jezewski, C. and Lanford, W.A. (2005). Plasma‐assisted atomic layer deposition of palladium. Chemical Vapor Deposition, 11(1), 60.

76Ten Eyck, G. A., Pimanpang, S., Juneja, J. S., Bakhru, H., Lu, T. M., & Wang, G. C. (2007). Plasma‐Enhanced Atomic Layer Deposition of Palladium on a Polymer Substrate. Chemical vapor deposition, 13(6‐7), 307.

77Mårtensson, P., Larsson, K., & Carlsson, J. O. (1999). Atomic layer epitaxy of copper: an ab initio investigation of the CuCl/H2 process: II. Reaction energies. Applied surface science, 148(1-2), 9-16.

78Mårtensson, P., Larsson, K., & Carlsson, J. O. (2000). Atomic layer epitaxy of copper: an ab initio investigation of the CuCl/H2 process: III. Reaction barriers. Applied surface science, 157(1-2), 92-100.

79Mane, A. U., & Shivashankar, S. A. (2005). Growth of (111)-textured copper thin films by atomic layer deposition. Journal of Crystal Growth, 275(1-2), e1253.

80Chen, C. S., Lin, J. H., You, J. H., & Chen, C. R. (2006). Properties of Cu (thd)2 as a precursor to prepare Cu/SiO2 catalyst using the atomic layer epitaxy technique. Journal of the American Chemical Society, 128(50), 15950.

81Utriainen, M., Kröger-Laukkanen, M., Johansson, L. S., & Niinistö, L. (2000). Studies of metallic thin film growth in an atomic layer epitaxy reactor using M (acac) 2 (M= Ni, Cu, Pt) precursors. Applied Surface Science, 157(3), 151.

82Tripathi, T. S., & Karppinen, M. (2017). Efficient process for direct atomic layer deposition of metallic Cu thin films based on an organic reductant. Chemistry of Materials, 29(3), 1230.

83Huo, J., Solanki, R., & McAndrew, J. (2002). Characteristics of copper films produced via atomic layer deposition. Journal of materials research, 17(9), 2394.
.
84Solanki, R., & Pathangey, B. (2000). Atomic layer deposition of copper seed layers. Electrochemical and solid state letters, 3(10), 479.

85Guo, Z., Li, H., Chen, Q., Sang, L., Yang, L., Liu, Z., & Wang, X. Chemistry of Materials, 2015, 27(17), 5988-5996.
86Lee, B. H., Hwang, J. K., Nam, J. W., Lee, S. U., Kim, J. T., Koo, S. M., & Sung, M. M. Angewandte Chemie International Edition, 2009, 48(25), 4536-4539.
87Vidjayacoumar, B., Emslie, D. J., Clendenning, S. B., Blackwell, J. M., Britten, J. F., & Rheingold, A. Chemistry of Materials, 2010, 22(17), 4844-4853.
88Kalutarage, L. C., Clendenning, S. B., & Winter, C. H. Chemistry of Materials, 2014, 26(12), 3731-3738.
89Li, Z., Rahtu, A., & Gordon, R. G. Journal of The Electrochemical Society, 2006, 153(11), C787-C794.
90Hagen, D. J., Povey, I. M., Rushworth, S., Wrench, J. S., Keeney, L., Schmidt, M., & Pemble, M. E. Journal of Materials Chemistry C, 2014, 2(43), 9205-9214.
91Chen, C. S., Lin, J. H., Lai, T. W., & Li, B. H. Journal of Catalysis, 2009, 263(1), 155-166.
92Chen, C. S., Lin, J. H., & Lai, T. W. Chemical Communications, 2008, (40), 4983-4985.

93Coyle, J. P., Dey, G., Sirianni, E. R., Kemell, M. L., Yap, G. P., Ritala, M., & Barry, S. T. Chemistry of Materials, 2013, 25(7), 1132-1138.

94Wu, L., & Eisenbraun, E. Electrochemical & Solid-State Letters, 2008, 11(5), H107-H110.

95Hagen, D. J., Connolly, J., Nagle, R., Povey, I. M., Rushworth, S., Carolan, P., & Pemble, M. E. Surface and Coatings Technology, 2013, 230, 3-12.

96Zhao, Y., Jia, X., Chen, G., Shang, L., Waterhouse, G. I., Wu, L. Z., & Zhang, T. Journal of the American Chemical Society, 2016, 138(20), 6517-6524.

97Han, S. W., Kim, D. H., Jeong, M. G., Park, K. J., & Kim, Y. D. Chemical Engineering Journal, 2016, 283, 992-998.

98Jeong, M. G., Kim, I. H., Han, S. W., Kim, D. H., & Kim, Y. D. Journal of Molecular Catalysis A: Chemical, 2016, 414, 87-93.

99Jeong, M. G., Park, E. J., Jeong, B., Kim, D. H., & Kim, Y. D. Chemical Engineering Journal, 2014, 237, 62-69.

100Park, E. J., Lee, J. H., Kim, K. D., Kim, D. H., Jeong, M. G., & Kim, Y. D. Catalysis Today, 2016, 260, 100-106.

101Nardi, K. L., Yang, N., Dickens, C. F., Strickler, A. L., & Bent, S. F. Advanced Energy Materials, 2015, 5(17). 1500412.

102Yang, P., Tong, X., Wang, G., Gao, Z., Guo, X., & Qin, Y. ACS Applied Materials & Interfaces, 2015, 7(8), 4772-4777.

103Hsu, C. C., Su, H. W., Hou, C. H., Shyue, J. J., & Tsai, F. Y. Nanotechnology, 2015, 26(38), 385201.

104Seo, S., Park, I. J., Kim, M., Lee, S., Bae, C., Jung, H. S., & Shin, H. Nanoscale, 2016, 8(22), 11403-11412.
105Nam, W. J., Gray, Z., Stayancho, J., Plotnikov, V., Kwon, D., Waggoner, S., & Fonash, S. J. ECS Transactions, 2015, 66(1), 275-279.
106Chen, C., Chen, C., Huang, P., Duan, F., Zhao, S., Li, P., & Qin, Y. Nanotechnology, 2014, 25(50), 504001.
107Elam, J. W., Libera, J. A., Huynh, T. H., Feng, H., & Pellin, M. J. (2010). The Journal of Physical Chemistry C, 114(41), 17286-17292.
108Wu, B. B., Zheng, H. M., Ding, Y. Q., Liu, W. J., Lu, H. L., Zhou, P., & Zhang, D. W. Nanoscale Research Letters, 2017, 12(1), 282.
109Vega, V., Gelde, L., González, A. S., Prida, V. M., Hernando, B., & Benavente, J. Journal of Industrial and Engineering Chemistry, 2017, 52, 66-72.
110Guan, D., Ma, L., Pan, D., Li, J., Gao, X., Xie, Y., & Yuan, C. Electrochimica Acta, 2017, 242, 117-124.
111Zazpe, R., Prikryl, J., Gärtnerova, V., Nechvilova, K., Benes, L., Strizik, L., & Macak, J. M. Langmuir, 2017, 33(13), 3208-3216.
112Vervuurt, R. H., Karasulu, B., Verheijen, M. A., Kessels, W. E. M., & Bol, A. A. Chemistry of Materials, 2017, 29(5), 2090-2100.
113Lu, W., Iwasa, Y., Ou, Y., Jinno, D., Kamiyama, S., Petersen, P. M., & Ou, H. RSC Advances, 2017, 7(14), 8090-8097.
114Park, S. W., Bae, K., Kim, J. W., Lee, G. B., Choi, B. H., Lee, M. H., & Shim, J. H. ACS Advanced Materials Interfaces, 2016, 3(21), 1600340.
115Bao, Y., Laitinen, M., Sajavaara, T., & Savin, H. Advanced Electronic Materials, 2017, 1600491.
116Li, S., Bao, Y., Laitinen, M., Sajavaara, T., Putkonen, M., & Savin, H. Physica Status Solidi (a), 2015, 212(8), 1795-1799.
117Park, T., Kim, H., Leem, M., Ahn, W., Choi, S., Kim, J., & Kim, Y. RSC Advances, 2017, 7(2), 884-889.
118Park, J. H., Fathipour, S., Kwak, I., Sardashti, K., Ahles, C. F., Wolf, S. F., & Seabaugh, A. (2016). ACS Nano, 10(7), 6888-6896.
119Detwiler, M. D., Gharachorlou, A., Mayr, L., Gu, X. K., Liu, B., Greeley, J., & Zemlyanov, D. Y. The Journal of Physical Chemistry C, 2015, 119(5), 2399-2411.
120Lu, J., Liu, B., Guisinger, N. P., Stair, P. C., Greeley, J. P., & Elam, J. W. Chemistry of Materials, 2014, 26(23), 6752-6761.
121Zhang, H., Gu, X. K., Canlas, C., Kropf, A. J., Aich, P., Greeley, J. P., & Marshall, C. L. Angewandte Chemie International Edition, 2014, 53(45), 12132-12136.
122Lee, S. W., Lee, Y. S., Heo, J., Siah, S. C., Chua, D., Brandt, R. E.,& Gordon, R. G. Advanced Energy Materials, 2014, 4(11), 1301916.
123Ruhle, S., Anderson, A. Y., Barad, H. N., Kupfer, B., Bouhadana, Y., Rosh-Hodesh, E., & Zaban, A. The Journal of Physical Chemistry Letters, 2012, 3(24), 3755-3764.
124Zhang, J., Liu, J., Peng, Q., Wang, X., & Li, Y. Chemistry of Materials, 2006, 18(4), 867-871.
125Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., & Varma, R. S. Chemical Reviews, 2016, 116(6), 3722-3811.
126Törndahl, T., Ottosson, M., & Carlsson, J. O. Thin Solid Films, 2004, 458(1), 129-136.
127Waechtler, T., Oswald, S., Roth, N., Jakob, A., Lang, H., Ecke, R., & Hietschold, M. Journal of the Electrochemical Society, 2009, 156(6), H453-H459.
128Alnes, M. E., Monakhov, E., Fjellvåg, H., & Nilsen, O. Chemical Vapor Deposition, 2012, 18(4‐6), 173-178.
129Kim, H., Lee, M. Y., Kim, S. H., Bae, S. I., Ko, K. Y., Kim, H., & Lee, D. J. Applied Surface Science, 2015, 349, 673-682.
130Kwon, J. D., Kwon, S. H., Jung, T. H., Nam, K. S., Chung, K. B., Kim, D. H., & Park, J. S. Applied Surface Science, 2013, 285, 373-379.
131Tan, L. K., Liu, B., Teng, J. H., Guo, S., Low, H. Y., & Loh, K. P. Nanoscale, 2014, 6(18), 10584-10588.
132Jin, Z., Shin, S., Kwon, D. H., Han, S. J., & Min, Y. S. Nanoscale, 2014, 6(23), 14453-14458.
133Shin, S., Jin, Z., Kwon, D. H., Bose, R., & Min, Y. S. Langmuir, 2015, 31(3), 1196-1202.
134Kwon, D. H., Jin, Z., Shin, S., Lee, W. S., & Min, Y. S. Nanoscale, 2016, 8(13), 7180-7188.
135Li, X., Puttaswamy, M., Wang, Z., Kei, T. C., Grimsdale, A. C., Kherani, N. P., & Tok, A. I. Y. Applied Surface Science, 2017, 422, 526-542.
136Kim, Y., Song, J. G., Park, Y. J., Ryu, G. H., Lee, S. J., Kim, J. S., & Jung, H. Scientific Reports, 2016, 6, 18754.
137Jang, Y., Yeo, S., Kim, H., & Kim, S. H. Applied Surface Science, 2016, 365, 160-165.
138Jurca, T., Moody, M. J., Henning, A., Emery, J. D., Wang, B., Tan, J. M., & Marks, T. J. Angewandte Chemie, 2017, 129(18), 5073-5077.
139Cadot, S., Renault, O., Frégnaux, M., Rouchon, D., Nolot, E., Szeto, K., & Quadrelli, E. A. Nanoscale, 2017, 9(2), 538-546.
140Mattinen, M., Hatanpää, T., Sarnet, T., Mizohata, K., Meinander, K., King, P. J., & Leskelä, M. ACS Advanced Materials Interfaces, 2017, 1700123.
141Song, J. G., Park, J., Lee, W., Choi, T., Jung, H., Lee, C. W., & Lansalot-Matras, C. ACS Nano, 2013, 7(12), 11333-11340.
142Nandi, D. K., Sen, U. K., Dhara, A., Mitra, S., & Sarkar, S. K., RSC Advances, 2016, 6(44), 38024-38032.
143Sun, Y., Chai, Z., Lu, X., & He, D. Science China Technological Sciences, 2017, 60(1), 51-57.
144Delabie, A., Caymax, M., Groven, B., Heyne, M., Haesevoets, K., Meersschaut, J., & Van Elshocht, S. Chemical Communications, 2015, 51(86), 15692-15695.
145Groven, B., Heyne, M., Nalin Mehta, A., Bender, H., Nuytten, T., Meersschaut, J., & De Gendt, S. Chemistry of Materials, 2017, 29(7), 2927-2938.
146Li, H., Wu, J., Yin, Z., & Zhang, H. Accounts of Chemical Research, 2014, 47(4), 1067-1075.
147Chang, Y. H., Zhang, W., Zhu, Y., Han, Y., Pu, J., Chang, J. K., & Takenobu, T. ACS Nano, 2014, 8(8), 8582-8590.
148Huang, J. K., Pu, J., Hsu, C. L., Chiu, M. H., Juang, Z. Y., Chang, Y. H., & Li, L. J. ACS Nano, 2013, 8(1), 923-930.
149Huang, J. K., Pu, J., Hsu, C. L., Chiu, M. H., Juang, Z. Y., Chang, Y. H., & Li, L. J. ACS Nano, 2013, 8(1), 923-930.
150]Liu, B., Luo, T., Mu, G., Wang, X., Chen, D., & Shen, G. ACS Nano, 2013, 7(9), 8051-8058.
151Park, K., Kim, Y., Song, J. G., Kim, S. J., Lee, C. W., Ryu, G. H., & Kim, H., 2D Materials, 2016, 3(1), 014004.
152Diware, M. S., Park, K., Mun, J., Park, H. G., Chegal, W., Cho, Y. J., & Kim, Y. D., Current Applied Physics, 2017, 17, 1329-1334.
153Zhao, J., Nunn, W. T., Lemaire, P. C., Lin, Y., Dickey, M. D., Oldham, C. J., ... & Parsons, G. N. Journal of the American Chemistry Society, 2015, 137(43), 13756-13759.
154Stock, N., & Biswas, S. Chemical Reviews, 2011, 112(2), 933-969.
155Salmi, L. D., Heikkilä, M. J., Puukilainen, E., Sajavaara, T., Grosso, D., & Ritala, M. Microporous & Mesoporous Materials, 2013, 182, 147-154.
156Ahvenniemi, E., & Karppinen, M. Chemical Communications, 2016, 52(6), 1139-1142.
157Zhao, J., Gong, B., Nunn, W. T., Lemaire, P. C., Stevens, E. C., Sidi, F. I., & Browe, M. A. Journal of Materials Chemistry A, 2015, 3(4), 1458-1464.
158Lemaire, P. C., Zhao, J., Williams, P. S., Walls, H. J., Shepherd, S. D., Losego, M. D., & Parsons, G. N. ACS Applied Materials & Interfaces, 2016, 8, 9514-9522.
159C. T. Hsieh, C.Y. Lin, Y. F. Chen, J. S. Lin and H. Teng, Carbon, 2013, 62, 109.
160C. Wang, D. Li, C. O. Too and G. G. Wallace, Chem. Mater. 2009, 21, 2604.
161S. Y. Gu, C. T. Hsieh, T. W. Lin, J. K. Chang, J. Li, and Y. A. Gandomi, Carbon, 2018, 137, 234.
162C. Wang, D. Li, C. O. Too and G. G. Wallace, Chem. Mater., 2009, 21, 2604.
163Q. M. Gong, Z. Li, Y. Wang, B. Wu, Z. Zhang and J. Liang, Mater. Res. Bull., 2007, 42, 474.
164S. Gu, C. T. Hsieh, T. W. Lin, C. Y. Yuan, Y. A. Gandomi, J. K. Chang and J. Li, Nanoscale, 2018, 10, 15521.
165D. Qu, M. Zheng, J. Li, Z. Xie and Z. Sun, Light. Sci. Appl., 2015, 4, e364.
166A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. L. M. Reddy and P. M. Ajayan, J. Phys. Chem. Lett., 2012, 3, 986.
167H. C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lin and K. H. Chen, Nanoscale, 2013, 5, 262.
168Wang, Z., Wu, S., Zhang, J., Chen, P., Yang, G., Zhou, X., Zhang, Q., Yan, Q. and Zhang, H., 2012. Nanoscale research letters, 7(1), p.161.
169K. E. Kim, K. J. Kim, W. S. Jung, S. Y. Bae, J. Park, J. Choi and J. Choo, Chem. Phys. Lett., 2005, 401, 459.
170L. Ni, K. Kuroda, L. P. Zhou, T. Kizuka, K. Ohta, K. Matsuishi, and J. Nakamura, Carbon, 2006, 44, 2265.
171G. Wang, X. Shen, J. Yao and J. Park, Carbon, 2009, 47, 2049.
172Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Leela Mohana Reddy, A. and Ajayan, P.M., 2012. 3(8), pp.986-991.
173W. H. Lee and P. J. Reucroft, Carbon, 1999, 37, 7.
174T. Takahagi and A. Ishitani, Carbon, 1984, 22, 43.
175.C. T. Hsieh, Y. F. Chen, C. E. Lee, Y. M. Chiang and H. Teng, Carbon, 2016, 106, 132.
176Renteria, J.D., Ramirez, S., Malekpour, H., Alonso, B., Centeno, A., Zurutuza, A., Cocemasov, A.I., Nika, D.L. and Balandin, A.A., (2015). Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature. Advanced Functional Materials, 25(29), 4664.
177Sengupta, I., Chakraborty, S., Talukdar, M., Pal, S. K., & Chakraborty, S. (2018). Thermal reduction of graphene oxide: How temperature influences purity. Journal of Materials Research, 33(23), 4113.
178H. C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lin and K. H. Chen, Nanoscale, 2013, 5, 262.
179Chen, C.M.; Zhang, Q.; Zhao, X.C.; Zhang, B.; Kong, Q.Q.; Yang, M.G.; Yang, Q.H.; Wang, M.Z.; Yang, Y.G.; Schlogl, R.; Su, D.S. J. Mater. Chem. 2012, 22, 14076-14084.
180Ge, B.S., Wang, T., Sun, H.X., Gao, W. and Zhao, H.R., Polymers for Advanced Technologies, 2018, 29(4),1334-1343.
181Ahmed, M. S.; Kim, Y. B. Sci. Rep. 2017, 7, 43279.
182Mattson, E.C.; Pande, K.; Unger, M.; Cui, S.; Lu, G.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J.; Hirschmugl, C.J. J. Phys. Chem. C, 2013, 117, 10698-10707.
183Wang, Y.; Iqbal, Z.; Malhotra, S. V. Chem. Phys. Lett. 2005, 402, 96-101.
184Vukovic, G.; Marinkovic, A.; Obradovic, M.; Radmilovic, V.; Colic, M.; Aleksic, R.; Uskokovic, P.S.; Appl. Surf. Sci. 2009, 255, 8067-8075.
185Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. ACS Nano 2011, 5, 4112-4117.
186Zeng, T.; Huang, H.; Kobayashi, N.; Li, J. Nat. Resour. 2017, 8, 611-631.
187 Chua, C.K.; Sofer, Z.; Luxa, J.; Pumera, M. Chem. Eur. J. 2015, 21, 8090-8095.
188 Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Nat. Chem. 2010, 2, 581-587.
189 Figueiredo, J. L.; Pereira, M. F. R. Catal. Today 2010, 150, 2-7.
190 Teng, H.; Hsu, L.Y.; Lai, Y.C. Environ. Sci. technol. 2001, 35, 2369-2374.
191 Chen, C.M.; Zhang, Q.; Zhao, X.C.; Zhang, B.; Kong, Q.Q.; Yang, M.G.; Yang, Q.H.; Wang, M.Z.; Yang, Y.G.; Schlogl, R.; Su, D.S. J. Mater. Chem. 2012, 22, 14076-14084.
192 Chua, C.K.; Sofer, Z.; Luxa, J.; Pumera, M. Chem. Eur. J. 2015, 21, 8090-8095.
193 Zhang, L.; Xia, Z. J. Phys. Chem. C 2011, 115, 11170-11176.
194 Tang, S.; Cao, Z. J. Phys. Chem. C 2012, 116, 8778-8791.
195 Gao, X.; Zhao, Y.; Liu, B.; Xiang, H.; Zhang, S. B. Nanoscale 2012, 4, 1171-1176.
196 Gao, X.; Wang, Y.; Liu, X.; Chan, T. L.; Irle, S.; Zhao, Y.; Zhang, S. B. Phys. Chem. Chem. Phys. 2011, 13, 19449-19453.
197 Compton, O. C.; Dikin, D. A.; Putz, K. W.; Brinson, L. C.; Nguyen, S. T. Adv. Mater. 2010, 22, 892-896.
198 Wang, C.; Li, D.; Too, C. O.; Wallace, G. G. Chem. Mater. 2009, 21, 2604-2606.
199 Hsieh, C. T.; Hsu, S. M.; Lin, J. Y.; Teng, H. J. Phys. Chem. C 2011, 115, 12367-12374.
200 Eda, G.; Lin, Y.Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.A.; Chen, I.S.; Chen, C.W.; Chhowalla, M. Adv. Mater. 2010, 22, 505-509.
201 Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S. Adv. Mater. 2013, 25, 3657-3662.
202 Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18, 4893-4908.
203 Xu, M.; He, G.; Li, Z.; He, F.; Gao, F.; Su, Y.; Zhang, L.; Yang, Z.; Zhang, Y.; Nanoscale 2014, 6, 10307-10315.
204 Mathkar, A. Tozier, D. Cox, P. Ong, P. Galande, C. Balakrishnan, K. Leela Mohana Reddy, A. Ajayan, P.M., J. Phys. Chem. Lett. 2012, 3, 986-991.
205 Hsu, H.C., Shown, I., Wei, H.Y., Chang, Y.C., Du, H.Y., Lin, Y.G., Tseng, C.A., Wang, C.H., Chen, L.C., Lin, Y.C., Chen, K.H. Nanoscale 2013, 5, 262-268.
206Hsieh, C. T., Chen, Y. F., Lee, C. E., Chiang, Y. M., Teng, H., Carbon 2016, 106, 132-141.
207Dai, Y.; Long, H.; Wang, X.; Wang, Y.; Gu, Q.; Jiang, W.; Wang, Y.; Li, C.; Zeng, T. H.; Sun, Y.; Zeng, J. Part. Part. Syst. Char. 2014, 31, 597-604.
208 Yan, L.; Zheng, Y.B.; Zhao, F.; Li, S.; Gao, X.; Xu, B.; Weiss, P.S.; Zhao, Y. Chem. Soc. Rev. 2012, 41, 97-114.
209 Hwang, J.O.; Park, J.S.; Choi, D.S.; Kim, J.Y.; Lee, S.H.; Lee, K.E.; Kim, Y.H.; Song, M.H.; Yoo, S.; Kim, S.O. ACS Nano 2011, 6, 159-167.
210 D. S. Su and R. Schlogl, ChemSusChem, 2010, 3, 136.
211C. Liu, F. Li, L. P. Ma and H. M. Cheng, Adv. Mater., 2010, 22, E28.
212Wang, R., Fan, H., Jiang, W., Ni, G. and Qu, S., Applied Surface Science, 2019, 467, 446-455.
213Hu, C., Liu, Y., Yang, Y., Cui, J., Huang, Z., Wang, Y., Yang, L., Wang, H., Xiao, Y. and Rong, J., Journal of Materials Chemistry B, 2013, 1(1), 39-42.
214Liu, Q., Guo, B., Rao, Z., Zhang, B. and Gong, J.R., Nano letters, 2013, 13(6), 2436-2441.
215Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T., J. Am. Chem. Soc. 2012, 134, 15−18.
216S. Gu, C.-T. Hsieh, C.-Y. Yuan, Y. Ashraf Gandomi, J.-K. Chang, C.-C. Fu, J.-W. Yang, R.-S. Juang, J. Lumin. 2012, 217, 116774

217Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M.; ACS Nano 2011, 5, 4112.
218Dai, Y.; Long, H.; Wang, X.; Wang, Y.; Gu, Q.; Jiang, W.; Wang, Y.; Li, C.; Zeng, T. H.; Sun, Y.; Zeng, J.; Part. Part. Syst. Char. 2014, 31, 597.

電子全文 電子全文(網際網路公開日期:20250204)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊