跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊介寧
研究生(外文):CHUANG, JIE-NING
論文名稱:均質陰離子交換膜感測器以電流-電壓特徵曲線於核酸檢測之應用
論文名稱(外文):Homogeneous Anion Exchange Membrane Sensor for Nucleic Acid Detection Using Current-Voltage Characteristic Curve
指導教授:孫一明
指導教授(外文):SUN, YI-MING
口試委員:王大銘陳文逸黃麗芬
口試委員(外文):WANG, DA-MINGCHEN, WEN-YIHHUANG, LI-FEN
口試日期:2020-06-18
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:93
中文關鍵詞:核酸檢測35S啟動子基因改造陰離子交換膜電流-電壓特徵曲線
外文關鍵詞:nucleic acid detectionCauliflower Mosaic Virus 35Sgenetically modified organismanion exchange membranecurrent-voltage characteristic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XII
第一章、緒論 1
1.1 研究動機 1
1.2 CaMV 35S 啟動子 (cauliflower mosaic virus 35S promoter) 2
1.3 傳統轉基因作物檢測 3
1.3.1 免疫分析法 3
1.3.2 PCR 4
1.4 生物傳感器 5
1.4.1 生物識別元件 5
1.4.2 電化學生物傳感器 6
1.4.3 光學生物傳感器 7
1.4.4 熱生物傳感器 8
1.4.5 壓電生物傳感器 9
1.5薄膜感測器發展現況 10
1.6研究範疇與架構 11
第二章、原理 13
2.1 電流-電壓特徵曲線 (current-voltage characteristic) 13
2.1.1 生物訊號產生機制 14
2.1.2 非專一性結合 (non-specific binding) 15
2.1.3 水分解 (water splitting) 16
2.2 離子交換膜傳輸機制 18
2.2.1唐南效應 (Donnan effect) 18
2.2.2能斯特-普朗克方程式 (Nernst–Planck equation) 18
2.3 陰離子交換膜 19
2.3.1 AEM膜合成(光起始自由基聚合加成反應) 19
2.3.2羧化反應(光起始表面修飾反應) 20
2.3.3 EDC偶聯 22
第三章、實驗方法 23
3.1 藥品與實驗設備 23
3.1.1 實驗藥品 23
3.1.2 實驗設備與器材 25
3.2 非基改與基改黃豆樣品製備 26
3.2.1 黃豆DNA萃取 26
3.2.2 聚合酶鏈反應擴增目標DNA片段 27
3.2.3 凝膠電泳分析目標DNA片段 27
3.3 薄膜感測器製備 28
3.3.1 均質陰離子交換膜製備 28
3.3.2 薄膜感測器製作 30
3.3.3 生物探針修飾 31
3.3.4 溶液配製 (pH計) 32
3.4 生物感測系統 33
3.4.1 生物芯片製作 33
3.4.2 生物感測系統設計 33
3.4.3 電流-電壓特徵曲線定義 34
3.5 陰離子交換膜性質鑑定 35
3.5.1 離子交換容量 (Ion exchange capacity, IEC) 35
3.5.2 含水率 (water uptake, WU)及膨潤度 (swelling ratio, SR)量測 36
3.5.3 離子交換膜結構分析 37
3.5.4 陰離子交換膜表面及截面型態觀察 38
3.5.5 生物探針修飾效率鑑定 39
第四章 結果與討論 41
4.1薄膜感測器用於genome DNA檢測 41
4.2 自製AEM膜配方最佳化及其性質鑑定及分析 44
4.2.1 自製AEM薄膜結構與表面構型之鑑定 44
4.2.2 市售膜及自製AEM膜物理性質分析 47
4.2.3 未經生物探針修飾之市售膜及自製AEM膜CVC行為分析 49
4.2.4 市售膜與自製AEM膜經生物探針修飾之效率比較 54
4.3 市售膜與自製AEM膜用於35S啟動子特異性結合檢測 60
4.4 AEM-4感測器之檢測極限 65
第五章 結論 67
Reference 69

[1]Roth, W. K. History and future of nucleic acid amplification technology blood donor testing. Transfus. Med. Hemother. 2019, 46(2), 67-75.
[2]Palchetti, I.; Mascini, M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008, 133, 846-854.
[3]Dooley, J. S. G. Nucleic acid probes for the food industry. Biotechnol. Adv. 1994, 12(4), 669-677..
[4]Marky, L. A.; Kupke, D. W. Enthalpy-entropy compensations in nucleic acids: contribution of electrostriction and structural hydration. In Methods in enzymology, Elsevier: 2000; Vol. 323, pp 419-441.
[5]Nakano, S.-i.; Sugimoto, N. The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys. Rev. 2016, 8(1), 11-23.
[6]Kralik, P.; Ricchi, M. A Basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108.
[7]Corless, C. E.; Guiver, M.; Borrow, R.; Edwards-Jones, V.; Kaczmarski, E. B.; Fox, A. J. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J. Clin. Microbiol. 2000, 38(5), 1747-1752.
[8]Qiu, B.; zhang, Y.-s.; Lin, Y.-b.; Lu, Y.-J.; Lin, Z.-y.; Wong, K.-Y.; Chen, G.-n., A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter. Biosens. Bioelectron. 2013, 41, 168-171.

[9]Fortunati, S.; Rozzi, A.; Curti, F.; Giannetto, M.; Corradini, R.; Careri, M. J. S., Single-walled carbon nanotubes as enhancing substrates for PNA-based amperometric genosensors. Sensors, 2019, 19(3), 588.
[10]Sun, W.; Zhong, J.; Qin, P.; Jiao, K., Electrochemical biosensor for the detection of cauliflower mosaic virus 35S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Anal. Biochem. 2008, 377(2), 115-119.
[11]Sin, M. L. Y.; Mach, K. E.; Wong, P. K.; Liao, J. C., Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2014, 14(2), 225-244.
[12]Gibson, T. D. J. A., Biosensors: The stabilité problem. Analusis 1999, 27(7), 630-638.
[13]Carpenter, A. C.; Paulsen, I. T.; Williams, T. C. J. G., Blueprints for biosensors: design, limitations, and applications. Genes 2018, 9(8), 375.
[14]Schultz, E. S. A transmissible mosaic disease of Chinese cabbage, mustard and turnip. J. Agric Res. 1921. 22, 173-177.
[15]Shepherd, R. J.; Wakeman, R. J.; Romanko, R. R. DNA in cauliflower mosaic virus. Virology 1968, 36, 150-152.
[16]Franck, A.; Guilley, H.; Jonard, G.; Richards, K. E.; Hirth, L. Nucleotide sequence of cauliflower mosaic virus DNA. Cell 1980, 21, 285-294.
[17]Odell, J. T.; Nagy, F.; Chua, N.-H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 1985, 313, 810-812.
[18]Benfey, P. N.; Chua, N.-H. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 1990, 250, 959-966.
[19]Fang, R.-X.; Nagy, F.; Sivasubramaniam, S.; Chua, N. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1989, 1, 141-150.
[20]Shan, G.; Embrey, S. K.; Schafer, B. W. A highly specific enzyme-linked immunosorbent assay for the detection of cry1ac insecticidal crystal protein in transgenic widestrike cotton. J. Agric. Food Chem. 2007, 55, 5974-5979.
[21]Kausar M.; Haleema S.; Muhammad H. B. Protein-based detection methods for genetically modified crops. Protein-protein interaction assays; IntechOpen.
[22]Bustin, S. A.; Benes, V.; Nolan, T.; Pfaffl, M. W. Quantitative real-time RT-PCR - a perspective. J. Mol. Endocrinol. 2005, 34, 597-601.
[23]Garibyan, L.; Avashia, N. Polymerase chain reaction. J. Invest. Dermatol. 2013, 133, 1-4.
[24]Clark Jr., L. C.; Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102 (1), 29-45.
[25]Vigneshvar, S.; Sudhakumari, C. C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications - an overview. Front Bioeng. Biotechnol. 2016, 4, 11-11.
[26]Hammond, J. L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69-80.
[27]Blair, E. O.; Corrigan, D. K. A review of microfabricated electrochemical biosensors for DNA detection. Biosens. Bioelectron. 2019, 134, 57-67.
[28]Ronkainen, N. J.; Brian Halsall H.; Heineman W. R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39, 1747-1763.
[29]Ligaj, M.; Oczkowski, T.; Jasnowska, J.; Musiał, W. G.; Filipiak, M. Electrochemical genosensors for detection of L. monocytogenes and genetically-modified components in food and genetically-modified components in food. Pol. J. Food Nutr. Sci. 2003, 12(2), 61-63.
[30]Martín-Fernández, B.; Manzanares-Palenzuela, C. L.; Sánchez-Paniagua López, M.; de-los-Santos-Álvarez, N.; López-Ruiz, B. Electrochemical genosensors in food safety assessment. Crit. Rev. Food Sci. Nutr. 2017, 57, 2758-2774.
[31]Piliarik, M.; Vaisocherová, H.; Homola, J. Surface plasmon resonance biosensing. Methods Mol. Biol. 2009, 503, 65-88.
[32]Mariotti, E.; Minunni, M.; Mascini, M. Surface plasmon resonance biosensor for genetically modified organisms detection. Anal. Chim. Acta 2002, 453, 165-172.
[33]Ramanathan, K.; Rank, M.; Svitel, J.; Dzgoev, A.; Danielsson, B. The development and applications of thermal biosensors for bioprocess monitoring. Trends Biotechnol. 1999, 17, 499-505.
[34]Yakovleva, M.; Bhand, S.; Danielsson, B. The enzyme thermistor—A realistic biosensor concept. A critical review. Anal. Chim. Acta 2013, 766, 1-12.
[35]Deakin, M. R.; Buttry, D. A. Electrochemical applications of the quartz crystal microbalance. Anal. Chem. 1989, 61, 1147A-1154A.
[36]Bunde, R. L.; Jarvi, E. J.; Rosentreter, J. J. Piezoelectric quartz crystal biosensors. Talanta 1998, 46, 1223-1236.
[37]Guilbault, G. G.; Suleiman, A. Piezoelectric crystal biosensors. Am. Biotechnol. Lab. 1990, 8 (28) 30-32.
[38]Minunni, M.; Tombelli, S.; Pratesi, S.; Mascini, M.; Piatti, P.; Bogani, P.; Buiatti, M.; Capponi, V. G. A piezoelectric affinity biosensor for genetically modified organisms (GMOs) detection. Anal. Lett. 2001, 34, 825-840.
[39]Slouka, Z.; Senapati, S.; Yan, Y.; Chang, H.-C. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures. Langmuir 2013, 29, 8275-8283.
[40]Senapati, S.; Slouka, Z.; Shah, S. S.; Behura, S. K.; Shi, Z.; Stack, M. S.; Severson, D. W.; Chang, H.-C., An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens. Bioelectron. 2014, 60, 92-100.
[41]Taller, D.; Go, D., Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013, 87, 053004.
[42]Zhang, C.; Sun, G.; Senapati, S.; Chang, H.-C., A bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput nucleic acid extraction and purification. Lab Chip, 2019, 19(22), 3853-3861.
[43]Ramshani, Z.; Zhang, C. Richards, K.; Chen, L.; Xu, G.; Stiles, B. L.; Hill, R.; Senapati, S.; Go, D. B.; Chang, H.-C., Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun. Biol. 2019, 2(1), 189.
[44]Yin, Z.; Ramshani, Z.; Waggoner, J. J.; Pinsky, B. A.; Senapati, S.; Chang, H.-C., A non-optical multiplexed PCR diagnostic platform for serotype-specific detection of dengue virus. Sens. Actuators B Chem. 2020, 310, 127854.
[45]Scarazzato, T.; Buzzi, D. C.; Bernardes, A. M.; Tenório, J. A. S.; Espinosa, D. C. R. Current-voltage curves for treating effluent containing hedp: determination of the limiting current. Braz. J. Chem. Eng. 2015, 32, 831-836.
[46]Kim, D.-S.; Jeong, Y.-T.; Park, H.-J.; Shin, J.-K.; Choi, P.; Lee, J.-H.; Lim, G. An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 2004, 20, 69-74.
[47]Höltzel, A.; Tallarek, U. Ionic conductance of nanopores in microscale analysis systems: Where microfluidics meets nanofluidics. J. Sep. Sci. 2007, 30, 1398-1419.
[48]Zaltzman, B.; Rubinstein, I. Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 2007, 579, 173-226.
[49]Mishchuk, N. A. Concentration polarization of interface and non-linear electrokinetic phenomena. Adv. Colloid Interface Sci., 2010, 160, 16-39.
[50]Chang, H.-C.; Yossifon, G.; Demekhin, E. A. Nanoscale Electrokinetics and Microvortices: How Microhydrodynamics Affects Nanofluidic Ion Flux. Annu. Rev. Fluid Mech. 2011, 44, 401-426.
[51]Rubinstein, I.; Zaltzman, B. Extended space charge in concentration polarization. Adv. Colloid Interface Sci. 2010, 159, 117-129.
[52]Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27-34.
[53]Strathmann, H.; Krol, J. J.; Rapp, H. J.; Eigenberger, G. Limiting current density and water dissociation in bipolar membranes. J. Membr. Sci. 1997, 125, 123-142.
[54]Ramirez, P.; Rapp, H. J.; Mafe, S.; Bauer, B. Bipolar membranes under forward and reverse bias conditions - Theory vs Experiment. J. Electroanal. Chem. 1994, 375, 101-108.
[55]Desharnais, B. M.; Lewis, B. A. G. Electrochemical water splitting at bipolar interfaces of ion exchange membranes and soils. Soil Sci. Soc. Am. J. 2002, 66, 1518-1525.
[56]Aritomi, T.; van den Boomgaard, T.; Strathmann, H. Current-voltage curve of a bipolar membrane at high current density. Desalination. 1996, 104, 13-18.
[57]Cheng, L. J.; Chang, H. C. Microscale pH regulation by splitting water Biomicrofluidics 2011, 5, 46502-465028.
[58]Donnan, F. G. The theory of membrane equilibria. Chem. Rev. 1924, 1, 73-90.
[59]Bargeman, G.; Koopsb, G.-H.; Houwing, J.; Breebaartb, I.; van der Horsta, H.C.; Wessling, M. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate, Desalination 2002, 149, 369-374.
[60]Nikonenko, V. V.; Pismenskaya, N. D.; Belova, E. I.; Sistat, P.; Huguet, P.; Pourcelly, G.; Larchet, C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Adv. Colloid Interface Sci. 2010, 160, 101-123.
[61]Elattar, A.; Elmidaoui, A.; Pismenskaia, N.; Gavach, C.; Pourcelly, G. Comparison of transport properties of monovalent anions through anion-exchange membranes. J. Membr. Sci. 1998, 143, 249-261.
[62]Lago, M. A.; Rodríguez-Bernaldo de Quirós, A.; Sendón, R.; Bustos, J.; Nieto, M. T.; Paseiro, P. Photoinitiators: a food safety review. Food Additives & Contaminants: Part A 2015, 32, 779-798.
[63]Vonk, R. J.; Wouters, S.; Barcaru, A.; Vivó-Truyols, G.; Eeltink, S.; de Koning, L. J.; Schoenmakers, P. J. Post-polymerization photografting on methacrylate-based monoliths for separation of intact proteins and protein digests with comprehensive two-dimensional liquid chromatography hyphenated with high-resolution mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 3817-3829.
[64]Morris, J. C.; Walsh, L. A.; Gomes, B. A.; Gigmes, D.; Fairfull-Smith, K. E.; Bottle, S. E.; Blinco, J. P. Photo-induced proton coupled electron transfer from a benzophenone ‘antenna’ to an isoindoline nitroxide. RSC Adv. 2015, 5, 95598-95603.
[65]Li, Y.; Gabriele, E.; Samain, F.; Favalli, N.; Sladojevich, F.; Scheuermann, J.; Neri, D. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries. ACS Comb. Sci. 2016, 18, 438-443.
[66]Lin, A. A.; Sastri, V. R.; Tesoro, G.; Reiser, A.; Eachus, R. On the crosslinking mechanism of benzophenone-containing polyimides. Macromolecules 1988, 21, 1165-1169.
[67]Staros, J. V.; Wright, R. W.; Swingle, D. M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 1986, 156, 220-222.
[68]Goksuluk, D.; Korkmaz, S.; Zararsiz, G.; Karaagaoglu, E., easyROC: An Interactive Web-tool for ROC Curve Analysis Using R Language Environment. R J. 2016, 8, 213-230.
[69]Karas, F.; Hnát, J.; Paidar, M.; Schauer, J.; Bouzek, K. Determination of the ion-exchange capacity of anion-selective membranes. Int. J. Hydrogen Energy 2014, 39, 5054-5062.
[70]Lange, H. Determination of the degree of swelling and crosslinking of extremely small polymer gel quantities by analytical ultracentrifugation. Colloid & Polymer Sci. 1986, 264, 488-493.
[71]Vargün, E.; Usanmaz, A. Degradation of Poly(2-hydroxyethyl methacrylate) Obtained by Radiation in Aqueous Solution. J. Macromol. Sci. A. 2010, 47, 882-891.
[72]Tian, B. H.; Fan, B.; Peng, X. J.; Luan, Z. K. A cleaner two-step synthesis of high purity diallyldimethylammonium chloride monomers for flocculant preparation. J. Environ. Sci. 2005, 17(5), 798-801.
[73]Belloň, T.; Polezhaev, P.; Vobecká, L.; Svoboda, M.; Slouka, Z., Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. J. Membrane Sci. 2019, 572, 607-618.
[74]Belloň, T.; Polezhaev, P.; Vobecká, L.; Slouka, Z., Fouling of a heterogeneous anion-exchange membrane and single anion-exchange resin particle by ssDNA manifests differently. J. Membrane Sci. 2019, 572, 619-631.
[75]Wang, Z.-L.; Wang, H.-L.; Yan, J.-M.; Ping, Y.; O, S.-I.; Li, S.-J.; Jiang, Q. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. Chem. Commun. 2014, 50, 2732-2734.
[76]Tiwari, J. N.; Nath, K.; Kumar, S.; Tiwari, R. N.; Kemp, K. C.; Le, N. H.; Youn, D. H.; Lee, J. S.; Kim, K. S. Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. Nat. Commun. 2013, 4, 2221-2228.
[77]Zhang, C.; Chen, Y.; Li, H.; Xue, W.; Tian, R.; Dugnani, R.; Liu, H. Facile fabrication of polyurethane-based graphene foam/lead zirconate titanate/polydimethylsiloxane composites with good damping performance. RSC Adv. 2018, 8, 7916-7923.
[78]Ripp, J., Analytical detection limit guidance & laboratory guide for determining method detection limits. Wisconsin Department of Natural Resources, Laboratory Certification Program: 1996.

電子全文 電子全文(網際網路公開日期:20250622)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top