(3.238.186.43) 您好!臺灣時間:2021/03/05 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊景傑
研究生(外文):YANG, CHING-CHIEH
論文名稱:利用在活性碳微孔中固定二價鐵製備抗酸的芬頓試劑
論文名稱(外文):Preparation Of Acid Resistant Heterogeneous Fenton Reagent by Securing Reactive Fe(II) in Micropores of Activated Carbon
指導教授:王清海
指導教授(外文):WANG, TSING-HAI
口試委員:李明旭藍祺偉
口試委員(外文):LI, MING-HSULAN, CHI-WEI
口試日期:2020-07-14
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:97
中文關鍵詞:界面活性劑芬頓反應活性碳循環經濟
外文關鍵詞:surfactantFenton reactionactivated carbonCircular economy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
為了避免傳統芬頓反應所產生的大量鐵汙泥,本研究以活性碳為載體,透過以界面活性劑協助將鐵離子帶入活性碳孔洞中,再經由簡易的碳熱反應,將三價鐵還原成二價鐵,同時碳化界面活性劑,藉此固定鐵基催化劑,將本實驗所製備之活性碳循環再生,達到減少廢棄物的目的。實驗結果顯示,當採用直接浸潤方式,受限於熱力學的平衡,僅能將約3%的鐵離子帶入活性碳中,也因此實廠廢水的降解僅能達到21%。透過水熱反應,可以將活性碳的鐵含量提升到13%,實廠廢水降解率可提升至56%,即使在酸性溶液中,鐵離子的濾出僅有1~3 mg/L。以SEM進行表面微結構分析,發現添加界面活性劑可避免氧化鐵在活性碳表面的團聚現象,藉此維持活性碳的高表面積與鐵基活性碳的高催化活性。相信本研究成果,對於減少實廠廢水處理的汙泥產量,具有實質的助益。
To avoid the tremendous amount of iron sludge generated by the traditional fenton reaction, this study uses activated carbon (AC) as a carrier to secure reactive Fe(II) from leaching during water treatment. With the assistance of surfactants, Fe(III), the precursor of reactive Fe(II), can be effectively brought into pores of AC and then reduced to Fe(II) through a simple carbothermal reaction. Experiment results showed that using the immersion method, there were only 3% Fe brought into AC owing to limitation thermodynamic equilibrium. Consequently, the degradation of wastewater was only 21%. Alternately by hydrothermal reaction, approximately 13% iron can be brought into AC that increased degradation up to 56% along with slightly 1~3 mg/L Fe leached in acid solution. It was found that the addition of surfactant can avoid the agglomeration of iron oxide on the surface of activated carbon that further retains high surface area of activated carbon. Results of this research are substantial benefits for reducing the sludge of wastewater treatment.
摘 要 I
致 謝 III
目 錄 IV
圖目錄 VII
表目錄 XII
第1章 緒論 1
1.1 前言 1
1.2 研究內容與流程圖 4
第2章 文獻回顧 6
2.1 活性碳 6
2.1.1 活性碳製作流程 6
2.1.2 活性碳再生 7
2.1.3 活性碳功能化 8
2.2 汙水處理廠 16
2.3 高級氧化技術 21
2.3.1 芬頓化學氧化法 22
2.3.2 臭氧氧化法 24
2.3.3 光化學氧化法 24
2.4 芬頓催化劑 25
2.4.1 絮凝沉澱 25
2.4.2 利用鐵渣作為催化劑 26
2.4.3 將氧化鐵/氧化鈰複合催化劑分散於活性碳 27
2.4.4 以碳化紡織汙泥結合鐵 28
2.5 以共價鍵固定金屬 29
2.5.1 以含氧官能基固定金屬鈷 29
2.5.2 以單寧酸錯合零價鐵 30
第3章 實驗方法 31
3.1 實驗裝置與流程 31
3.1.1 實驗基材與藥品 31
3.1.2 實驗儀器 32
3.1.3 實驗步驟 33
3.2 分析儀器 35
3.2.1 光度計MD600 35
3.2.2 X射線螢光分析儀 36
3.2.3 場發掃描式電子顯微鏡(FE-SEM) 37
3.2.4 X-ray粉末繞射儀(XRD) 39
3.2.5 比表面積&孔隙度分析儀(BET) 41
3.2.6 原子吸收光譜儀(AA) 49
第4章 結果與討論 51
4.1 水相吸附法 53
4.1.1 UV分析 53
4.1.2 XRF分析 59
4.1.3 SEM、BET分析 61
4.2 水熱法 62
4.2.1 UV分析 62
4.2.2 XRF分析 67
4.2.3 FE-SEM分析 69
4.2.4 BET 73
4.3 再生測試 75
4.3.1 UV分析 76
4.3.2 XRF分析 79
4.3.3 XRD分析 84
4.3.4 SEM分析 87
4.3.5 BET分析 90
4.3.6 AA分析 91
第5章 結論 94
參考文獻 95


[1]推動循環經濟—創造經濟與環保雙贏,行政院新聞傳播處,2018年03月02日,網址:https://reurl.cc/gv13ob
[2]黃耀輝、周珊珊、黃國豪,Fenton家族廢水高級氧化處理技術,經濟部工業局,2001工程實務技術研討會論文集,2001年11月。
[3]Atkin, R.; Craig, V.S.J.; Wanless, E.J.; Biggs, S., Mechanism of Cationic Surfactant Adsorption at the Solid–Aqueous Interface, Adv. Colloid Interface Sci., 2003, 103(3), 219–304.
[4]中國炭素工業股份有限公司網路資訊http://www.carbon.com.tw/index.html
[5]Lee, W.; Yoon, SW.; Choe, JK.; Lee, M.; Choi, YG., Anionic Surfactant Modification of Activated Carbon for Enhancing Adsorption of Ammonium Ion from Aqueous Solution, Sci. Total Environ., 2018, 639, 1432-1439.
[6] Wei, YF.; Liang, XJ.; Guo, CL; Dang, Z., Competitive Partitioning of Phenanthrene in Carbon Nanomaterials and Anionic and Nonionic Micelles, Colloids Surface A, 2018, 553, 612-617.
[7]Palko, J.W.; Oyarzun, D.I.; Ha, B.; Stadermann, M.; Santiago, J.G., Nitrate Removal from Water Using Electrostatic Regeneration of Functionalized Adsorbent, Chem. Eng. J., 2018, 334, 1289-1296.
[8]Balasubramani, U.; Venkatesh, R.; Subramaniam, S.; Gopalakrishnan, G.; Sundararajan, V., Alumina/Activated Carbon Nano-Composites: Synthesis and Application in Sulphide Ion Removal from Water, J. Hazard. Mater., 2017, 340, 241-252.
[9]Wahby, A.; Ramos-Fernandez, J.M.; Martinez-Escandell, M.; Sepulveda-Escribano, A.; Silvestre-Albero, J.; Rodriguez-Reinoso, F., High-Surface-Area Carbon Molecular Sieves for Selective CO_2 Adsorption, ChemSusChem, 2010, 3, 974–981.
[10]Wakayama, H.; Fukushima, Y., Nanoporous Silica Prepared with Activated Carbon Molds Using Supercritical CO_2, Chem. Mater. 2000, 12, 756-761.
[11] Li, GM.; Wang, LC.; Li, WX.; Xu, Y., Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents, ChemPhysChem, 2015, 16(16), 3458-3467.
[12]Chen, WF.; Yan, CC.; Wang, Q.; Pan, L.; Chen, LF., Carbothermal Synthesis of Activated Carbon-Supported Nano Zero Valent Iron: Effects of Temperature, Characterization, and Reactivity, Desalination Water Treat. 2016, 57(20), 9520-9529.
[13]Oschatz, M.; van Deelen, T.W.; Weber, J.L.; Lamme, W.S.; Wang, G.; Goderis, B.; Verkinderen, O.; Dugulan, A.I.; de Jong, K.P., Effects of Calcination and Activation Conditions on Ordered Mesoporous Carbon Supported Iron Catalysts for Production of Lower Olefins from Synthesis Gas, Catal. Sci. Technol., 2016, 6(24), 8464-8473.
[14]Mortazavian, S.; An, HH; Chun, DW.; Moon, JY., Activated Carbon Impregnated by Zero-Valent Iron Nanoparticles (AC/nZVI) Optimized for Simultaneous Adsorption and Reduction of Aqueous Hexavalent Chromium: Material Characterizations and Kinetic Studies, Chem. Eng. J., 2018, 353, 781-795.
[15]Thompson, E.; Danks, A.E.; Bourgeois, L.; Schnepp, Z., Iron-Catalyzed Graphitization of Biomass, Green Chem. 2015, 17(1), 551-556.
[16]Espinosa, J.C.; Manickam-Periyaraman, P.; Bernat-Quesada, F.; Sivanesan, S.; Alvaro, M.; Garcia, H.; Navalon, S., Engineering of activated carbon surface to enhance the catalytic activity of supported cobalt oxide nanoparticles in peroxymonosulfate activation, APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 249, 42-53.
[17]新竹科學園區園區環境保護資訊網,網址:https://reurl.cc/4gnOMK
[18]氧化技術在高濃度COD廢水處理之應用,網址http://ebooks.lib.ntu.edu.tw/1_file/moeaidb/012507/Tb019.pdf
[19]Tetteh. E.K.; Rathilal, S., Application of Organic Coagulants in Water and Wastewater Treatment, IntechOpen, DOI:10.5772/intechopen.84556.2019.
[20]Van, HT.; Nguyen, LH.; Hoang, TK.; Tran, TP.; Vo, AT.; Pham, T.T.; Nguyen, XC., Using FeO-Constituted Iron Slag Wastes as Heterogeneous Catalyst for Fenton and Ozonation Processes to Degrade Reactive Red 24 from Aqueous Solution, Sep. Purif. Tech. 2019, 224, 431-442.
[21]Liu, J.; Cui, JN.; Zhou, TY.; Fan, SY.; Zhang, CL.; Hu, Q.; Hou, XH., Fe3O4-CeO2 loaded on modified activated carbon as efficient heterogeneous catalyst, Colloid Surface A 2019, 565, 59-69.
[22]Leal, T.W.; Lourenco, L.A.; Brandao, H.D.; da Silva, A.; de Souza, S.M.A.G.U.; de Souza, A.A.U., Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton, J. Hazard. Mater. 2018, 359, 96-103.
[23]Li, MQ.; Luo, R.; Wang, CH.; Zhang, M.; Zhang, WX.; Klu, P.K.; Yan, YB.; Qi, JW.; Sun, XY.; Wang, LJ.; Li, JS.,
Iron-tannic modified cotton derived Fe-0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation, CHEMICAL ENGINEERING JOURNAL, 2019, 372, 774-784.
[24]科學online,2014/11/12,原子光譜法,網址:
https://highscope.ch.ntu.edu.tw/wordpress/?p=58325

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔