(3.237.178.91) 您好!臺灣時間:2021/03/07 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇靖雯
研究生(外文):Su, Jing-Wen
論文名稱:氧化鐵光電極表面化學對活性氧物質生產選擇性影響
論文名稱(外文):Effect of Surface Chemistry on the Selective Radical Oxygen Species Production by Hematite Photoelectrode
指導教授:王清海
指導教授(外文):Wang, Tsing-Hai
口試委員:李明旭藍祺偉
口試委員(外文):Li, Ming-HsuLan, Chi-Wei
口試日期:2020-07-14
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:光電化學系統自由基赤鐵礦高級氧化法
外文關鍵詞:PhotoelectrochemistryFree radicalHematiteAdvance oxidation process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
具有經濟競爭力的產氫技術是發展低碳能源的重要關鍵,而光電化學系統(PEC系統)是其中之一。光電化學系統中,在陽極進行的產氧反應,由於涉及四個電子的轉移,因此是光電化學系統中的反應速率決定步驟。相較於需要四個電子轉移的產氧反應,僅需要兩個電子轉移的產活性氧物質反應,可大幅提升於陽極的水氧化反應速率。基於上述原因,本研究的主要目標便是尋找切換產氧反應與產自由基反應的開關,探索操作條件(電壓、電解質等)及氧化鐵表面化學特性,對於自由基產率的影響。本研究分為三部分,第一部份實驗為尋找自由基在多少電壓下有最大生成率,根據實驗結果,電解質的種類會影響ROS的產率及分布,在NaNO3溶液中,OH自由基的產率隨著電壓上升而下降,但在NaCl溶液中,OH自由基產率卻隨著電壓上升而增加,重要的是,隨著自由基產量的上升,溶氧度、雙氧水濃度與pH值也隨之增加,根據公式O2+2e-+2H+ → H2O2,表示電解水產生的O2大多變成了H2O2,由於此反應同時消耗H+,因此pH值上升。第二部分實驗為使用不同表面修飾劑改變電極表面的親疏水性,並觀察其對自由基生成的影響。實驗結果顯示,在相同操作條件下,電極表面越親水自由基產率越高,且操作電壓越高,OH自由基產率的增速越高。第三部分是以實廠廢水降解進行驗證。實驗結果顯示,光電化學系統對於實廠廢水的降解並無顯著的效益,可能是因為實廠廢水的色度與氧化鐵電極競爭太陽光的吸收,導致在系統中並無觀察到顯著的光電流,也因此沒有產生自由基進行實廠廢水降解,此論述仍需更多實驗數據佐證。
Hydrogen production in a cost-effective manner is the basis for acquiring lowcarbon-footprint energy. Among all available technologies photoelectrochemical (PEC) system is a promising one capable of converting sunlight into chemical energy. However, the sluggish kinetic in water oxidation, specifically oxygen evolution, significantly limits the overall hydrogen evolution in PEC system as it involves in four-electron transfer. By contrast, water oxidation through hydroxyl radical production is therefore intriguing as it only requires transferring two electrons instead. Based on this consideration, the objective of this study is to find the switch between oxygen evolution and hydroxyl radical production in the hematite-based PEC system.
Based on experimental results, the electrolyte will affect the distribution of ROS. In NaNO3 solution, the yield of OH radicals decreases with increasing operation voltage. On the other hand, in NaCl solution the OH radical yield increases with increasing voltage. Furthermore, along with the production of OH radicals, the concentrations of dissolved oxygen and hydrogen peroxide, and pH increase too. According to the chemical reaction O2+2e-+2H+ → H2O2, it means that most of the evolved O2 were reduced to H2O2 at cathode side and consequently resulted in elevated pH as a result of H+ consumption.
Surface hydrophilicity was also found to have significantly influence on ROS production. By coating with polymer surface modifiers, surface hydrophilicity of hematite electrodes changed significantly. Experimental observations suggested that the higher surface hydrophilicity, the higher OH radical produced. Furthermore, applying higher operating voltage will dramatically increase the growth rate of OH radical production in a hydrophilic electrode.
Despite the PEC system is capable of ROS production, its application in dye degradation was found to be limited by the competiting light absorbance between dyes and hematite. This argument was supported by the extremely low photocurrent observed in the dye system. As a result, no ROS could be effectively produced and therefore no significant dye degradation was observed.

摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 4
2.1 氫能源 4
2.1.1 化石燃料 4
2.1.2 電解 5
2.1.3 光觸媒 7
2.2 提升產氫效率 8
2.2.1 光電化學 8
2.2.2 外加偏壓 9
2.2.3 以產自由基取代產氧 10
2.3 活性氧物種(ROS) 11
2.3.1 去除環境汙染物 14
2.3.2 產雙氧水 24
2.4 廢水處理 27
2.4.1 高級氧化法 27
2.4.2 Fenton化學氧化法 28
2.4.1 光催化氧化法 31
2.4.2 光化學氧化法 32
2.4.3 電解氧化法 33
第三章 實驗 35
3.1 實驗藥品 35
3.2 實驗儀器 36
3.3 實驗流程 37
3.3.1 赤鐵礦電極之製備 39
3.3.2 修飾電極製備 40
3.4 分析及性質測試儀器介紹 41
3.4.1 電化學工作站 41
3.4.2 紫外-可見光譜儀 45
3.4.3 太陽光模擬器 47
3.4.4 光度計 (Photometer) 50
3.4.5 場發掃描式電子顯微鏡[38] 51
第四章 結果與討論 54
4.1 不同電壓下自由基產率 55
4.1.1 水溶液導電度效應 56
4.1.2 操作電壓效應 59
4.2 表面化學對自由基產率影響 65
4.2.1 電極表面之電化學 66
4.2.2 電極表面親疏水性 68
4.2.3 溶氧度、pH值、H2O2及Cl2之變化 75
4.3 自由基應用 78
第五章 結論 83
參考文獻 85

[1] Balat, M.Possible method for hydrogen production, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2008, 31(25), 39-50.
[2] Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability, International Journal of Hydrogen Energy, 2015, 40(34), 11094-11111.
[3] 燃料電池氫氣的幾種製造方法https://kknews.cc/science/lk6ame9.html
[4] 陳廷睿(2013)。利用FeS2 奈米晶體敏化TiO2光電極在 近紅外光電化學產氫之研究。國立臺灣師範大學化學系碩士論文,台北市。
[5] 翁朱蓮(2009)。電解不同水溶液製造氫氣特性的探討。南榮技術學院工程科技研究所碩士論文,臺南市。
[6] Department of Energy, Hydrogen Production: Electrolysis (https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis)
[7] 郭瑋汝(2018)。光陽極在可見光下進行醇類選擇性氧化的應用。國立中央大學化學工程與材料工程學系碩士論文,桃園縣。
[8] Barroso, M.; Pendlebury, S.R.; Cowan, A.J.; Durrant, J.R. Charge Carrier Trapping, Recombination and Transfer in Hematite (α-Fe2O3) Water Splitting Photoanodes, Chem. Sci., 2013, 4(7), 2724-2734.
[9] Swierk, J.R.; Mallouk, T.E., Design and Development of Photoanodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells, Chem. Soc. Rev., 2013, 42(6), 2357-2387.
[10] Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T.W. Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes, Energy Environ. Sci. 2012, 5, 7626-7636.
[11] Nakabayashi, Y.; Nishikawa, M.; Saito, N.; Terashima, C.; Fujishima, A. Significance of Hydroxyl Radical in Photoinduced Oxygen Evolution in Water on Monoclinic Bismuth Vanadate, J. Phys. Chem. C 2017, 121, 46, 25624-25631.
[12] Jacob, R. A. The integrated antioxidant system, Nutr. Res., 1995, 15, 755-766.
[13] 光觸媒-拾埃生技有限公司http://deca-angstrom.com/tw/product/4
[14] Brillas, E.; Martinez-Huitle C.A. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: An Updated Review, Appl. Catal. B, 2015, 166, 603-643.
[15] Khataee, A.R.; Vahid, B.; Behjati, B.; Safarpour, M. Treatment of a Dye Solution Using Photoelectro-Fenton Process on the Cathode Containing Carbon Nanotubes under Recirculation Mode: Investigation of Operational Parameters and Artificial Neural Network Modeling, Environ. Progr. Sustain. Energy, 2013, 32(3), 557-563.
[16] Khataee, A.R.; Zarei, M.; Khataee, A.R. Electrochemical Treatment of Dye Solution by Oxalate Catalyzed Photoelectro-Fenton Process Using a Carbon Nanotube-PTFE Cathode: Optimization by Central Composite Design, Clean, 2011, 39(5), 482-490.
[17] Liu, YY.; Jin, W.; Zhao, YP.; Zhang, GS.; Zhang, W. Enhanced Catalytic Degradation of Methylene Blue by Alpha-Fe2O3/Graphene Oxide via Heterogeneous Photo-Fenton Reactions, Appl. Catal. B, 2017, 206, 642-652.
[18] Ben Hammouda, S.; Fourcade, F.; Assadi, A.; Soutrel, I.; Adhoum, N.; Amrane, A.; Monser, L. Effective Heterogeneous Electro-Fenton Process for the Degradation of a Malodorous Compound, Indole, Using Iron Loaded Alginate Beads As a Reusable Catalyst, Appl. Catal. B, 2016, 182, 47-58.
[19] Zeng, QY.; Bai, J.; Li, JH.; Xia, LG.; Huang, K.; Li, XJ.; Zhou, BX. A Novel in situ Preparation Method for Nanostructured Alpha-Fe2O3 Films from Electrodeposited Fe Films for Efficient Photoelectrocatalytic Water Splitting and the Degradation of Organic Pollutants, J. Mater. Chem. A, 2015, 3(8), 4345-4353.
[20] Peng, Y-P.; Chen, HL.; Huang, C.P. The Synergistic Effect of Photoelectrochemical (PEC) Reactions Exemplified by Concurrent Perfluorooctanoic acid (PFOA) Degradation and Hydrogen Generation over Carbon and Nitrogen Codoped TiO2 Nanotube Arrays (C-N-TNTAs) Photoelectrode, Appl. Catal. B, 2017, 209, 437-446.
[21] Cho, K.; Qu, Y.; Kwon, D.; Zhang, H.; Cid, C.A.; Aryanfar, A.; Hoffmann, M.R. Effects of Anodic Potential and Chloride Ion on Overall Reactivity in Electrochemical Reactors Designed for Solar-Powered Wastewater Treatment, Environ. Sci. Technol., 2014, 48(4), 2377-2384.
[22] Koo, MS.; Cho, K.; Yoon, J.; Choi, W. Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays, Environ. Sci. Technol., 2017, 51(11), 6590-6598.
[23] Ozoemena, K.I. Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications, RSC Adv., 2016, 6, 89523-89550.
[24] Ramaswamy, N.; Mukerjee, S. Influence of Inner- and Outer-Sphere Electron Transfer Mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline Media. J. Phys. Chem. C , 2011, 115, 18015–18026.
[25] Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T.W. Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes. Energy Environ. Sci. 2012, 5, 7626-7636.
[26] Takashima, T.; Ishikawa, K.; Irie, H. Efficient oxygen evolution on hematite at neutral pH enabled by proton-coupled electron transfer, Chem. Comm., 2016, 52(97), 14015-14018.
[27] Le Formal, F.; Pastor, E.; Tilley, S.D.; Mesa, C.A.; Pendlebury, S.R.; Grätzel, M.; Durrant, J.R. Rate Law Analysis of Water Oxidation on a Hematite Surface. J. Am. Chem. Soc. 2015, 137, 6629-6637.
[28] Zhao, W. L., Wang, G.-Z., Yi, F., Zhu T.-L. Research progress on persulfate activation technology. Modern Chemical Industry, 2018, 38(7), 53-56.
[29] 何志軒(2010)。以化學法與電化學法氧化分解有機反應性染料之探討。淡江大學水資源及環境工程學系博士班學位論文,新北市。
[30] 司洪濤、呂冠霖、黃香玫(2003)。氧化技術在高濃度COD廢水處理之應用,台灣大學。
[31] Theory - Equipment – GreenTec http://www.biogreentec.com/UserPage.aspx?str=Fenton
[32] 林良憲(2010)。利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究。國立中山大學化學系研究所碩士論文,高雄市。
[33] 胡啟章(2011)。電化學原理與方法。五南圖書出版股份有限公司,台北。
[34] 曾志明(2013)。拋棄式奈米孔洞金銅合金電極之製備與應用。國立中興大學碩士學位論文。
[35] Louit, G.; Foley, S.; Cabillic, J.; Coffigny, H.; Taran, F.; Valleix, A.; Ronault, J. P.; Pin, S. The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiation Phys. and Chem., 2005, 72, 119-124
[36] 光焱科技股份有限公司,太陽光模擬器基礎原理。
https://www.enlitechnology.com/uploadfiles/402/product/SS-3A/Enli-Tech_%E4%B8%80%E4%B8%8B%E5%B0%B1%E6%87%82%EF%BC%81%E5%A4%AA%E9%99%BD%E5%85%89%E6%A8%A1%E6%93%AC%E5%99%A8%E5%8E%9F%E7%90%86%E7%B0%A1%E4%BB%8B.pdf
[37] 卓立漢光,太陽光模擬器https://baike.baidu.com/item/%E5%A4%AA%E9%98%B3%E5%85%89%E6%A8%A1%E6%8B%9F%E5%99%A8#2
[38] 賴逸凡(2019)。製備與鑑定雙金屬奈米零價鐵觸媒以應用於降解硝基苯酚。元智大學化學工程與材料科學學系碩士論文,桃園縣。
[39] Guo, YP.; Zeng, ZQ.; Liu, YJ,; Huang, ZG.; Cui, Y.; Yang, JY., One-Pot Synthesis of Sulfur Doped Activated Carbon as A Superior Metal-Free Catalyst for the Adsorption and Catalytic Oxidation of Aqueous Organics, J. Mater. Chem. A, 2018, 6, 4055-4067.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔