跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊廷
研究生(外文):LIN, JYUN-TING
論文名稱:感測器模組開發應用於偏光片卷對卷製程監測
論文名稱(外文):Development of sensor monitoring module for roll-to-roll process of polarizer
指導教授:李碩仁李碩仁引用關係李其源
指導教授(外文):LEE, SHUO-JENLEE, CHI-YUAN
口試委員:楊恭廷
口試委員(外文):YANG, GONG-TING
口試日期:2019-12-20
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:120
中文關鍵詞:整合型微感測器偏光膜卷對卷製程
外文關鍵詞:Integrated micro sensorPolarizing filmR2R process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
封面.......................................................................i
書名頁.....................................................................ii
論文口試委員審定書.........................................................iii
論文授權書.................................................................iV
簽署人須知..................................................................V
中文摘要...................................................................Vi
英文摘要.................................................................Viii
致謝.......................................................................X
目錄......................................................................iX
圖目錄....................................................................Xii
表目錄...................................................................XVii


第一章 緒論
1.1 前言
1.2 虛實整合系統(Cyber-Physical System, CPS)
1.3 智慧工廠(Smart Factory)
1.4 卷對卷(Roll-to-Roll, R2R)
1.5 偏光膜(Polarizing Film)
1.6 研究背景與目的
1.7 文獻回顧
1.7.1 自製感測器
1.7.2 微溫度感測器
1.7.2.1 微熱電偶
1.7.2.2 電阻式微溫度感測器
1.7.3 微濕度感測器
1.7.4 微流量感測器
1.8 研究方法
第二章 整合型微感測器原理、設計與製程開發
2.1 微溫度感測器
2.1.1 溫度感測器之種類
2.1.2 電阻式溫度感測器之原理
2.1.3 微溫度感測器之設計
2.2 微濕度感測器
2.2.1 濕度感測器之種類
2.2.2 電阻式與電容式濕度感測器之原理
2.3 微流量感測器
2.3.1 流量感測器之種類
2.3.2 熱線式流量感測器之原理
2.3.3 熱量計型流量感測器之原理
2.4 整合型微感測器之設計
2.5 整合型微感測器之製作流程
2.5.1 聚醯亞胺薄膜清洗
2.5.2 薄膜沉積(鉻&金)
2.5.3 微影製程(黃光製程)
第三章 感測器校正
3.1 整合型微感測器之裁切與接線
3.2 整合型微感測器之可靠度測試
3.2.1 微溫度感測器之可靠度測試 (溫度校正)
3.2.2 微濕度感測器之可靠度測試 (濕度校正)
3.2.3 微流量感測器之可靠度測試 (流量校正)
第四章 感測器監測模組軟體設計
4.1 監測模組開發板挑選
4.2 Arduino程式撰寫
4.2.1 微溫度感測器讀取程式設計
4.2.2 微濕度感測器讀取程式設計
4.2.3 微流量感測器讀取程式設計
4.2.4 整合型微感測器數據之無線傳輸與紀錄儲存
第五章 感測器模組實測與性能比較
5.1 商購感測器
5.1.1 商購感測器模組
5.1.2 商購感測器模組測試數據
5.1.3 商購感測器模組封裝與抗蝕處理
5.2 自製整合型感測器與商購感測器之監測數據與比較
5.2.1 溫度感測器之監測數據與比較
5.2.2 濕度感測器之監測數據與比較
5.3 自製整合型感測器監測模組尚待解決與可改善之處
第六章 結論與展望
6.1 結論
6.2 展望
參考文獻

[1]高野敦「猜一猜,什麼是『工業』」,商業周刊,2014年2月。
[2]Industry 4.0: The Internet of Things on the way to the fourth industrial revolution, VDI-Nachrichten, April 2011.
[3]Industrie 4.0 Plattform, Last download on 15. July 2013. https://www.plattform-i40.de/I40/Navigation/DE/Home/home.html
[4]Prof. Dr.-Ing. Jürgen Jasperneite, “What's behind terms like Industry 4.0,” Computer & Automation, Internet and automation, 2012.
[5]D. Chu, W. K. Wong, K. E. Goodeson, R. F. W. Pease, “Transient temperature measurements of resist heating using nanothermocouples,” Journal of Vacuum Science & Technology B, Vol. 30, pp. 2985-2989 (2003).
[6]J. D. Wrbanek, G. C. Fralick, D. Zhu, “Ceramic thin film thermocouples for SiC-based ceramic matrix composites,” Thin Solid Film, Vol. 520, pp. 5801-5806 (2012).
[7]K. G. Kreider, F. DiMeo, “Platinum/palladium thin-film thermocouples for temperature measurements on silicon wafers,” Sensors and Actuators A, Vol. 69, pp. 46-52 (1998).
[8]D. Werschmoeller, X. Li, “Measurement of tool internal temperatures in the tool–chip contact region by embedded micro thin film thermocouples,” Journal of Manufacturing Processes, Vol. 13, pp. 147-152 (2011).
[9]J. J. Atherton, M. C. Rosamond, S. Johnstone, D. A. Zeze, “Thermal characterization of µL volumes using a thin film thermocouple based sensor,” Sensors and Actuators A, Vol. 166, pp. 34-39 (2011).
[10]A. R. Mohammadi, T. C. M. Graham, C. P. J. Bennington, M. Chiao, “Development of a compensated capacitive pressure and temperature sensor using adhesive bonding and chemical-resistant coating for multiphase chemical reactors,” Sensors and Actuators A, Vol. 163, pp. 471-480 (2010).
[11]G. S. Chung, C. H. Kim, “RTD characteristics for micro-thermal sensors,” Microelectronics Journal, Vol. 39, pp. 1560-1563 (2008).
[12]S. Jung, D. Seo, S. J. Lombardo, Z. C. Feng, J. K. Chen, Y. Zhang, “Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers,” Sensors and Actuators A, Vol. 175, pp. 53-59 (2012).
[13]K. Ahn, B. W. Wessels, S. Sampath, “Spinel humidity sensors prepared by thermal spray direct writing,” Sensors and Actuators B, Vol. 107, pp. 34-346 (2005).
[14]M. Bruzzi, S. Miglio, M. Scaringella, G. Bongiorno, P. Piseri, A. Podesta, P. Milani, “First study of humidity sensors based on nanostructured carbon films produced by supersonic cluster beam deposition,” Sensors and Actuators B, Vol. 100, pp. 173-176 (2004).
[15]C. T. Wang, C. L. Wu, I. C. Chen, Y. H. Huang, “Humidity sensors based on silica nanoparticle aerogel thin films,” Sensors and Actuators B, Vol. 107, pp. 402-410 (2005).
[16]C. Y. Lee and G. B. Lee, “MEMS-base humidity sensors with integrated temperature sensors for signal drift compensation,” J. Micromechanics and Microengineering, Vol. 13, pp. 620-627 (2003).
[17]T. Fei, K. Jiang, S. Liu, T. Zhang, “Humidity sensors based on Li-loaded nanoporous polymers,” Sensors and Actuators B, Vol. 190, pp. 523-528 (2014).
[18]L. Juhász, J. Mizsei, “Humidity sensor structures with thin film porous alumina for on-chip integration,” Thin Solid Films, Vol. 517, pp. 6198-6201 (2009).
[19]A. Te’telin, C. Pellet, C. Laville, G. N’Kaoua, “Fast response humidity sensors for a medical microsystem,” Sensors and Actuators B, Vol. 91, pp. 211-218 (2003).
[20]C. L. Dai, “A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique,” Sensors and Actuators B, Vol. 122, pp. 375-380 (2007).
[21]L. T. Chen, C. Y. Lee, W. H. Cheng, “MEMS-based humidity sensor with integrated temperature compensation mechanism,” Sensors and Actuators A, Vol. 147, pp. 522-528 (2008).
[22]A. S. Hassan, V. Juliet, C. J. A. Raj, “MEMS based humidity sensor with integration of temperature sensor, ” Materials Today: Proceedings, Vol. 5, pp. 10728-10737 (2018).
[23]M. Shikida, K. Yoshikawa, S. Iwai, K. Sato, “Flexible flow sensor for large-scale air-conditioning network systems,” Sensors and Actuators A, Vol. 188, pp. 2-8 (2012).
[24]N. Xue, W. P. Yan, “A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sensors and Actuators A, Vol. 173, pp. 145-151 (2012).
[25]T. Y. Kim, W. Y. Chung, “Analysis of micro flow sensor using excel spreadsheet,” SICE-ICASE International Joint Conference (2006).
[26]T. Y. Kim, W. Y. Chung, “Design of micro flow sensor with optimal detection spacing,” SICE Annual Conference (2007).
[27]陳瑞和,感測器,全華圖書公司,民國九十二年。
[28]吳冠緯,可撓式微型感測器應用於微型燃料電池內部溫、濕度之即時監控,元智大學,機械工程研究所碩士論文,民國九十六年。
[29]J. W. Jewett, Jr., R. A. Serway, Physics for Scientists and Engineers with Modern Physics 8th edition, pp. 776, 780-781 (2014).
[30]T. Hubert, “Humidity-Sensing Materials,” MRS Bulletin, 1999.
[31]T. Islam, S. Ghosh, H. Saha, “ANN-based signal conditioning and its hardware implementation of a nanostructured porous silicon relative humidity sensor,” Sensors and Actuators B, Vol. 120, pp. 130-141 (2006).
[32]J. R. Huang, M. Q. Li, Z. Y. Huang, J. H. Liu, “A novel conductive humidity sensor based on field ionization from carbon nanotubes,” Sensors and Actuators A, Vol. 133, pp. 467-471 (2007).
[33]Z. M. Rittersma, “Recent achievements in miniaturised humidity sensors-a review of transduction techniques,” Sensors and Actuators A, Vol. 96, pp. 196-210 (2002).
[34]P. G. Su, Y. L. Sun, C. C. Lin, “Novel low humidity sensor made of TiO2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance,” Talanta, Vol. 69, pp. 946-951 (2006).
[35]J. Wang, B. K. Xu, S. P. Ruan, S. P. Wang, “Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium, Materials Chemistry and Physics,” Vol. 8, pp. 746-750 (2003).
[36]C. H. Wu, D. Kang, P. H. Chen, Y. C. Tai, “ MEMS thermal flow sensors,” Sensors and Actuators A: Physical, Vol. 241, pp.135-144 (2016).
[37]J. KIEŁBASA, “ The hot-wire anemometer, ” Archives of Mining Sciences, Vol. 59, pp. 467-475 (2014).
[38]J. KIEŁBASA, “The hot-wire anemometer,” Archives of Mining Sciences, Vol. 59, pp. 467-475 (2014).
[39]D. Duri, C. Baudet, J. P. Moro, P. E. Roche, P. Diribarne, “Hot-wire anemometry for superfluid turbulent coflows,” Review of Scientific Instruments, Vol. 86, pp. 025007 (2015).
[40]鍾啟東,「微機電系統(MEMS)之介紹」,台肥月刊,第四十四卷,第三期,產業報導,民國九十二年。
[41]陳仲宜、莊允中,前瞻奈米鍍膜技術與潛力市場探索,2004。

電子全文 電子全文(網際網路公開日期:20250721)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top