跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭羽翔
研究生(外文):Cheng, Yu-Hsiung
論文名稱:可撓式微感測器製程優化與 水電解器遠端即時微觀診斷
論文名稱(外文):Flexible micro-sensor process optimization and remote instant diagnosis of Proton Exchange Membrane Water Electrolyzers (PEMWE)
指導教授:李其源陳嘉鴻陳嘉鴻引用關係
指導教授(外文):Lee, Chi-YuanChen, Chia-Hung
口試委員:李其源陳嘉鴻李碩仁
口試委員(外文):Lee, Chi-YuanChen, Chia-HungLee, Shuo-Jen
口試日期:2020-07-20
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:104
中文關鍵詞:質子交換膜水電解器可撓式微感測器遠端診斷
外文關鍵詞:PEMWEflexible micro sensorremote diagnosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
封面 i
書名頁 ii
論文口試委員審定書 iii
授權書 iv
簽署人須知 vii
中文摘要 viii
英文摘要 ix
致謝 x
目錄 xi
圖目錄 xiv
表目錄 xix
第一章 緒論 1
1.1 前言 1
1.2 可再生能源 3
1.3 氫能 5
1.4 運輸燃料 7
1.5 產氫方法介紹 11
1.6 研究背景與目的 12
1.7 文獻回顧 13
1.8 研究方法 32
第二章 可撓式六合一微感測器之感測原理 33
2.1 微電壓感測器原理 33
2.2 微電流感測器原理 33
2.3 微溫度感測器原理 34
2.4 電阻式微濕度感測器原理 35
2.5 電容式微濕度感測器原理 35
2.6 熱線式微流量感測器原理 36
2.7 熱量計微流量感測器原理 37
2.8 電容式微壓力感測器原理 38
2.9 長條形微感測器光罩設計 39
2.10線寬微感測器光罩設計 41
2.11微小化微感測器光罩設計 43
2.12可撓式微型感測器之電路封裝 45
第三章 可撓式六合一微感測器製程開發 48
3.1 聚醯亞胺薄膜清洗與固定 50
3.2 蒸鍍鉻/鈦/金 52
3.3 第一次黃光微影 54
3.4 金/鉻/鈦蝕刻 58
3.5 第二次黃光微影與塗佈介電層 60
3.6 第三次黃光微影與金屬掀離法 61
3.7 第四次黃光微影與塗佈保護層 63
3.8 參數調整 66
第四章 可撓式微型感測器校正 67
4.1. 可撓式微型感測器之可靠度測試 (溫度校正) 67
4.2. 可撓式微型感測器之可靠度測試 (濕度校正) 70
4.3. 可撓式微型感測器之可靠度測試 (流量校正) 72
4.4. 可撓式微型感測器之可靠度測試 (壓力校正) 73

第五章 水電解器 74
5.1 膜電極組 75
5.2 雙極板流道設計 76
5.3 集電板與端板 78
5.4 感測器支架 79
5.5 水電解器組裝 80
5.6 遠端監控設備 82
第六章 水電解器即時微觀診斷 86
6.1 水電解器測試環境 87
6.2 水電解器電壓分佈 88
6.3 水電解器電流分佈 90
6.4 水電解器溫度分佈 91
6.5 水電解器濕度分佈 93
6.6 水電解器流量分佈 94
第七章 結論與未來展望 95
7.1 結論 95
7.2 未來展望 96
附錄A 無線遠端數據與NI PXI機箱數據校正 97
參考文獻 100


[1.]Report of the conference of the parties on its twenty-third session. United Nations framework convention on climate change: held in Bonn, Germany from November 2017 (2017).
[2.]F. Jost, A. Dale, S. Schwebel, “How positive is ‘change’ in climate change? A sentiment analysis, ” Environmental Science & Policy, 96, pp. 27-36 (2019).
[3.]IEA, Global generation shares from coal and low-carbon sources, 1971-2020, IEA, Paris URL:<https://www.iea.org/data-and-statistics/charts/global-generation-shares-from-coal-and-low-carbon-sources-1971-2020>
[4.]UN Environment, “Emissions Gap Report 2018, ” (2018).
[5.]T. Wilberforce, Z. E. Hassan, F. N. Khatib, A. A. Makky, A. Baroutaji, J. G. Carton, A. G. Olabi, “ Developments of electric cars and fuel cell hydrogen electric cars, ” International Journal of Hydrogen Energy, 42, pp. 25695-25734 (2017).
[6.]B. Lee, J. Heo, S. Kim, C. Sung, C. Moon, S. Moon, H. Lim, “Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations, ” Energy Conversion and Management, 162, pp. 139-144 (2018).
[7.]IEA (2020), Gas 2020, IEA, Paris URL:< https://www.iea.org/reports/gas-2020>
[8.]J. O. Abe, A. P. I. Popoola, E. Ajenifuja, O. M. Popoola, “Hydrogen energy, economy and storage: Review and recommendation, ” International Journal of Hydrogen Energy, 44, pp. 15072-15086
[9.]M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, “A comprehensive review on PEM water electrolysis,” International Journal of Hydrogen Energy, 38, pp. 4901-4934 (2013).
[10.] 行政院五大施政目標之風力發電四年推動計畫說明
[11.] P. Moçoteguy, A. Brisse, “A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, ” International Journal of Hydrogen Energy, 38, pp.15887-15902 (2013).
[12.] M. Becherif, H.S. Ramadan, K. Cabaret, F. Picard, N. Simoncini, O. Bethoux, “Hydrogen energy storage: new techno-economic emergence solution analysis, ”Energy Procedia, 74, pp. 371-380 (2015).
[13.] F. M. Sapountzi, J. M. Gracia, C. J. Weststrate, H. O. A. Fredriksson, J. W. Niemantsverdriet, “Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, ” Energy and Combustion Science, 58, pp. 1-35 (2017).
[14.]X. Shi, X. Liao, Y. Li, “Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework, ”Renewable Energy, 154, pp.786-796 (2020).
[15.]M. Genovese, D. Blekhman, M. Dray, P. Fragiacomo, “Hydrogen losses in fueling station operation, ” Journal of Cleaner Production, 248, pp. 119266 (2020).
[16.]D.J. Durbin, C. Malardier-Jugroot, “Review of hydrogen storage techniques for on board vehicle applications, “Hydrogen Energy, 38, pp. 14595-146171 (2013).
[17.]P. Ahmadi, “Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles, ” J. Clean. Prod, 225 ,pp. 1209-1219 (2019)
[18.]D. C. Rosenfeld, J. Lindorfer, K. Fazeni-Fraisl, “Comparison of advanced fuels—which technology can win from the life cycle perspective? ”J. Clean. Prod, 238, pp. 117879 (2019)
[19.]A. Potter, S. Graham, “Supplier involvement in eco-innovation: the co-development of electric, hybrid and fuel cell technologies within the Japanese automotive industry, ”J. Clean. Prod.,210, pp. 1216-1228 (2019).
[20.]S. Popov, O. Baldynov, “The hydrogen energy infrastructure development in Japan,” E3S Web Conf., 69 , 02001 (2018).
[21.]R. Ortiz Cebolla, C. Navas, “Supporting hydrogen technologies deployment in EU regions and member states: the smart specialisation platform on energy (S3PEnergy), ” Hydrogen Energy, 44, pp. 19067-19079 (2019).
[22.]B. Budde, K. Konrad, “Tentative governing of fuel cell innovation in a dynamic network of expectations, ” Res. Policy, 48, 1098-1112 (2019).
[23.]Ø. Ulleberg, R. Hancke, “Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway, ” Hydrogen Energy, 45 ,pp.1201-1211 (2019).
[24.]N. Hacking, P. Pearson, M. Eames, “Mapping innovation and diffusion of hydrogen fuel cell technologies: evidence from the UK’s hydrogen fuel cell technological innovation system, 1954–2012,” Hydrogen Energy, 44, 29805-29848 (2019).
[25.]E. Shafiei, B. Davidsdottir, J. Leaver, H. Stefansson, E.I. Asgeirsson, “Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: a simulation-based comparison between hydrogen and electricity, ” J. Clean. Prod., 144, pp.237-247 (2017).
[26.]P. Y. Hsieh, T. Y. Yu, K.C. Wu, L. F. W. Chang, “Influences and uncertainty of battery-swapping electric scooters on energy system in Taiwan, ” Energy Procedia, 153, pp. 95-100 ,(2018).
[27.]中華民國交通部公路總局統計數據
[28.]Dufour, J. Serrano, D.P. Gálvez, J.L. Moreno, J. González, “A. hydrogen production from fossil fuels: life cycle assessment of technologies with low greenhouse gas emissions, " Energy Fuels , 25, pp. 2194-2202. (2011)
[29.]Steward, D. Current (2005) Hydrogen from Coal without CO2 Capture and Sequestration, v3.101. Available online: https://www.hydrogen.energy.gov/h2a_
prod_studies.html (accessed on 3 September 2017).
[30.]C. Acar, I. Dincer, “Comparative assessment of hydrogen production methods from renewable and non-renewable sources, ” International Journal of Hydrogen Energy, 39, pp. 1-12 (2014).
[31.]X. M. Guo, E. Trably, E. Latrille, H. Carrère, J. P. Steyer, “Hydrogen production from agricultural waste by dark fermentation: A review, ” International Journal of Hydrogen Energy,35, pp. 10660-10673 (2017).
[32.]V. L. Cardoso, B. B. Romão, F. T. M. Silva, J. G. Santos, F. R. X. Batista, J. S. Ferreira, “Hydrogen Production by Dark Fermentation, ” Italian Association of Chemical Engineering, 38, pp (2014).
[33.]A. Marinkas, I. S. Piron, Y. Lee, A. Lim, H. S. Park, J. H. Jang, H. J. Kim, J. Kim, A. Maljusch, O. Conradi, D. Henkensmeier, “ Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly (2,6-dimethyl-1,4-phenylene oxide) and their use in alkaline water electrolysis, ” Polymer, 145, pp. 242-251 (2018).
[34.]K. C. Sandeep, S. Kamath, K. Mistry, A. Kumar, S. K. Bhattacharya, K. Bhanja, S. Mohan, “ Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production, ” International Journal of Hydrogen Energy, 42, pp. 12094-12103 (2017).
[35.]A. Kadier, M. S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed, N. F. Azman, W. Logroño, Y. Simayi, A. A. Hamid, “ Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals, ” Renewable and Sustainable Energy Reviews, 61, pp. 501-525 (2016).
[36.] H. Ju, S. Badwal, S. Giddey, “ A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production, ” Applied Energy, 231, pp. 502-533 (2018).
[37.] P. Nikolaidis, A. Poullikkas, “ A comparative overview of hydrogen production processes, ” Renewable and Sustainable Energy Reviews, 67, pp. 597-611 (2017).
[38.] H. Ito, N. Kawaguchi, S. Someya, T. Munakata, “ Pressurized operation of anion exchange membrane water electrolysis, ” Electrochimica Acta, 297, pp. 188-196 (2019).
[39.] A. A. Kalinnikov, S. A. Grigoriev, D. G. Bessarabov, “ Nonequilibrium poroelectroelastic theory for polymer electrolytes under conditions of water electrolysis, ” International Journal of Hydrogen Energy, 44, pp. 7889-7904 (2019).
[40.] T. Fujimura, W. Hikima, Y. Fukunaka, T. Homma, “ Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes, ” Electrochemistry Communications, 101, pp. 43-46 (2019).
[41.]M. Möckl, M. Bernt, J. Schröter, A. Jossen, “ Proton exchange membrane water electrolysis at high current densities: investigation of thermal limitations, ” International Journal of Hydrogen Energy, 45, pp. 1417-1428 (2020).
[42.] T. Fujimura, W. Hikima, Y. Fukunaka, T. Homma, “ Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes, ” Electrochemistry Communications, 101, pp. 43-46 (2019).
[43.]M. C. Saccardo, A. G. Zuqello, K. A. Tozzi, R. Goncalves, L. A. Hirano, C. H. Scuracchio, “ Counter-ion and humidity effects on electromechanical properties of Nafion®/Pt composites, ” Materials Chemistry and Physics, 244, pp. 122674-122682 (2020).
[44.] S. Giancola, M. Zatoń, Á. R. Carmona, M. Dupont, A. Donnadio, S. Cavaliere, J. Rozière, D. J. Jones, “ Composite short side chain PFSA membranes for PEM water electrolysis, ” Journal of Membrane Science, 570-571, pp. 69-76 (2019).
[45.] M. Müller, M. Carmo, A. Glüsen, M. Hehemann, S. Saba, W. Zwaygardt, D. Stolten, “ Water management in membrane electrolysis and options for advanced plants, ” International Journal of Hydrogen Energy, 44, pp. 10147-10155 (2019).
[46.]M. Sartory, E. W. Ogris, P. Salman, T. Fellinger, M. Justl, A. Trattner, M. Klell, “ Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar, ” International Journal of Hydrogen Energy, 42, pp. 30493-30508 (2017).
[47.] Z. Dobó, Á. B. Palotás, “ Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis, ” International Journal of Hydrogen Energy, 41, pp. 11849-11856 (2016).

[48.]F. E. Chakik, M. Kaddami, M. Mikou, “ Effect of operating parameters on hydrogen production by electrolysis of water, ” International Journal of Hydrogen Energy, 42, pp. 25550-25557 (2017).
[49.] S. Dahbia, R. Aboutnia, A. Aziza, N. Benazzia, M. Elhafyanib, K. Kassmia, “ Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller, ” International Journal of Hydrogen Energy, 41, pp. 20858-20866 (2016).
[50.] P. Trinke, B. Bensmann, R. H. Rauschenbach, “ Experimental evidence of increasing oxygen crossover with increasing current density during PEM water electrolysis, ” Electrochemistry Communications, 82, pp. 98-102 (2017).
[51.] D. Ferrero, M. Santarelli, “ Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells, ” Energy Conversion and Management, 148, pp. 16-29 (2017).
[52.] S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, P. Millet, “ Current status, research trends, and challenges in water electrolysis science and technology, ” International Journal of Hydrogen Energy (2020). (Article in press)
[53.] Y. Huang, L. Wang, Y. Hou, W. Zhang, Y. Zhang, “ A prototype IOT based wireless sensor network for traffic information monitoring, ” International Journal of Pavement Research and Technology, 11, pp. 146-152 (2018).
[54.] E. Jafer, C. S. Ibala, “ Design and development of multi-node based wireless system for efficient measuring of resistive and capacitive sensors, ” Sensors and Actuators A, 189, pp. 276-287 (2013).
[55.] Y. Huang, W. Dong, T. Huang, Y. Wang, L. Xiao, Y. Su, Z. Yin, “ Self-similar design for stretchable wireless LC strain sensors, ” Sensors and Actuators A, 224, pp. 36-42 (2015).
[56.] M. E. Youssef, R. S. Amin, K. M. E. Khatib, “ Development and performance analysis of PEMFC stack based on bipolar plates fabricated employing different designs, ” Arabian Journal of Chemistry, 11, pp. 609-614 (2018).
[57.] C. Min, J. He, K. Wang, L. Xie, X. Yang, “ A comprehensive analysis of secondary flow effects on the performance of PEMFCs with modified serpentine flow fields, ” Energy Conversion and Management, 180, pp. 1217-1224 (2019).
[58.] S. Chen, Z. Xia, X. Zhang, Y. Wu, “ Numerical studies of effect of interdigitated flow field outlet channel width on PEM fuel cell performance author links open overlay panel, ” Energy Procedia, 158, pp. 1678-1684 (2019).
[59.] H. Sadeghifar, N. Djilali, M. Bahrami, “ Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load, ” Journal of Power Sources, 273, pp. 96-104 (2015).
[60.] M. Kim, J. W. Lim, D. G. Lee, “ Electrical contact resistance between anode and cathode bipolar plates with respect to surface conditions, ” Composite Structures, 189, pp. 79-86 (2018).
[61.] Q. Lei, B. Wang, P. Wang, S. Liu, “ Hydrogen generation with acid/alkaline amphoteric water electrolysis, ” Journal of Energy Chemistry, 38, pp. 162-169 (2019).
[62.] M. K. Cho, H. Y. Park, S. Choe, S. J. Yoo, J. Y. Kim, H. J. Kim, D. Henkensmeier, S. Y. Lee, Y. E. Sung, H. S. Park, J. H. Jang, “ Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis, ” Journal of Power Sources, 347, pp. 283-290 (2017).
[63.] P. Lettenmeier, S. Kolb, F. Burggraf, A. S. Gago, K. A. Friedrich, “ Towards developing a backing layer for proton exchange membrane electrolyzers, ” Journal of Power Sources, 311, pp. 153-158 (2016).
[64.] O. F. Selamet, M. S. Ergoktas, “ Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers, ” Journal of Power Sources, 281, pp. 103-113 (2015).
[65.] L. Allidières, A. Brisse, P. Millet, S. Valentin, M. Zeller, “ On the ability of PEM water electrolysers to provide power grid services, ” International Journal of Hydrogen Energy, 44, pp. 9690-9700 (2019).
[66.]G. S. Ogumerem, E. N. Pistikopoulos “Parametric optimization and control for a smart Proton Exchange Membrane Water Electrolysis (PEMWE) system, ” Journal of Process Control, 91, pp. 37-49 (2020)

電子全文 電子全文(網際網路公開日期:20250722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top