|
[1.]Report of the conference of the parties on its twenty-third session. United Nations framework convention on climate change: held in Bonn, Germany from November 2017 (2017). [2.]F. Jost, A. Dale, S. Schwebel, “How positive is ‘change’ in climate change? A sentiment analysis, ” Environmental Science & Policy, 96, pp. 27-36 (2019). [3.]IEA, Global generation shares from coal and low-carbon sources, 1971-2020, IEA, Paris URL:<https://www.iea.org/data-and-statistics/charts/global-generation-shares-from-coal-and-low-carbon-sources-1971-2020> [4.]UN Environment, “Emissions Gap Report 2018, ” (2018). [5.]T. Wilberforce, Z. E. Hassan, F. N. Khatib, A. A. Makky, A. Baroutaji, J. G. Carton, A. G. Olabi, “ Developments of electric cars and fuel cell hydrogen electric cars, ” International Journal of Hydrogen Energy, 42, pp. 25695-25734 (2017). [6.]B. Lee, J. Heo, S. Kim, C. Sung, C. Moon, S. Moon, H. Lim, “Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations, ” Energy Conversion and Management, 162, pp. 139-144 (2018). [7.]IEA (2020), Gas 2020, IEA, Paris URL:< https://www.iea.org/reports/gas-2020> [8.]J. O. Abe, A. P. I. Popoola, E. Ajenifuja, O. M. Popoola, “Hydrogen energy, economy and storage: Review and recommendation, ” International Journal of Hydrogen Energy, 44, pp. 15072-15086 [9.]M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, “A comprehensive review on PEM water electrolysis,” International Journal of Hydrogen Energy, 38, pp. 4901-4934 (2013). [10.] 行政院五大施政目標之風力發電四年推動計畫說明 [11.] P. Moçoteguy, A. Brisse, “A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, ” International Journal of Hydrogen Energy, 38, pp.15887-15902 (2013). [12.] M. Becherif, H.S. Ramadan, K. Cabaret, F. Picard, N. Simoncini, O. Bethoux, “Hydrogen energy storage: new techno-economic emergence solution analysis, ”Energy Procedia, 74, pp. 371-380 (2015). [13.] F. M. Sapountzi, J. M. Gracia, C. J. Weststrate, H. O. A. Fredriksson, J. W. Niemantsverdriet, “Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, ” Energy and Combustion Science, 58, pp. 1-35 (2017). [14.]X. Shi, X. Liao, Y. Li, “Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework, ”Renewable Energy, 154, pp.786-796 (2020). [15.]M. Genovese, D. Blekhman, M. Dray, P. Fragiacomo, “Hydrogen losses in fueling station operation, ” Journal of Cleaner Production, 248, pp. 119266 (2020). [16.]D.J. Durbin, C. Malardier-Jugroot, “Review of hydrogen storage techniques for on board vehicle applications, “Hydrogen Energy, 38, pp. 14595-146171 (2013). [17.]P. Ahmadi, “Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles, ” J. Clean. Prod, 225 ,pp. 1209-1219 (2019) [18.]D. C. Rosenfeld, J. Lindorfer, K. Fazeni-Fraisl, “Comparison of advanced fuels—which technology can win from the life cycle perspective? ”J. Clean. Prod, 238, pp. 117879 (2019) [19.]A. Potter, S. Graham, “Supplier involvement in eco-innovation: the co-development of electric, hybrid and fuel cell technologies within the Japanese automotive industry, ”J. Clean. Prod.,210, pp. 1216-1228 (2019). [20.]S. Popov, O. Baldynov, “The hydrogen energy infrastructure development in Japan,” E3S Web Conf., 69 , 02001 (2018). [21.]R. Ortiz Cebolla, C. Navas, “Supporting hydrogen technologies deployment in EU regions and member states: the smart specialisation platform on energy (S3PEnergy), ” Hydrogen Energy, 44, pp. 19067-19079 (2019). [22.]B. Budde, K. Konrad, “Tentative governing of fuel cell innovation in a dynamic network of expectations, ” Res. Policy, 48, 1098-1112 (2019). [23.]Ø. Ulleberg, R. Hancke, “Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway, ” Hydrogen Energy, 45 ,pp.1201-1211 (2019). [24.]N. Hacking, P. Pearson, M. Eames, “Mapping innovation and diffusion of hydrogen fuel cell technologies: evidence from the UK’s hydrogen fuel cell technological innovation system, 1954–2012,” Hydrogen Energy, 44, 29805-29848 (2019). [25.]E. Shafiei, B. Davidsdottir, J. Leaver, H. Stefansson, E.I. Asgeirsson, “Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: a simulation-based comparison between hydrogen and electricity, ” J. Clean. Prod., 144, pp.237-247 (2017). [26.]P. Y. Hsieh, T. Y. Yu, K.C. Wu, L. F. W. Chang, “Influences and uncertainty of battery-swapping electric scooters on energy system in Taiwan, ” Energy Procedia, 153, pp. 95-100 ,(2018). [27.]中華民國交通部公路總局統計數據 [28.]Dufour, J. Serrano, D.P. Gálvez, J.L. Moreno, J. González, “A. hydrogen production from fossil fuels: life cycle assessment of technologies with low greenhouse gas emissions, " Energy Fuels , 25, pp. 2194-2202. (2011) [29.]Steward, D. Current (2005) Hydrogen from Coal without CO2 Capture and Sequestration, v3.101. Available online: https://www.hydrogen.energy.gov/h2a_ prod_studies.html (accessed on 3 September 2017). [30.]C. Acar, I. Dincer, “Comparative assessment of hydrogen production methods from renewable and non-renewable sources, ” International Journal of Hydrogen Energy, 39, pp. 1-12 (2014). [31.]X. M. Guo, E. Trably, E. Latrille, H. Carrère, J. P. Steyer, “Hydrogen production from agricultural waste by dark fermentation: A review, ” International Journal of Hydrogen Energy,35, pp. 10660-10673 (2017). [32.]V. L. Cardoso, B. B. Romão, F. T. M. Silva, J. G. Santos, F. R. X. Batista, J. S. Ferreira, “Hydrogen Production by Dark Fermentation, ” Italian Association of Chemical Engineering, 38, pp (2014). [33.]A. Marinkas, I. S. Piron, Y. Lee, A. Lim, H. S. Park, J. H. Jang, H. J. Kim, J. Kim, A. Maljusch, O. Conradi, D. Henkensmeier, “ Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly (2,6-dimethyl-1,4-phenylene oxide) and their use in alkaline water electrolysis, ” Polymer, 145, pp. 242-251 (2018). [34.]K. C. Sandeep, S. Kamath, K. Mistry, A. Kumar, S. K. Bhattacharya, K. Bhanja, S. Mohan, “ Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production, ” International Journal of Hydrogen Energy, 42, pp. 12094-12103 (2017). [35.]A. Kadier, M. S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed, N. F. Azman, W. Logroño, Y. Simayi, A. A. Hamid, “ Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals, ” Renewable and Sustainable Energy Reviews, 61, pp. 501-525 (2016). [36.] H. Ju, S. Badwal, S. Giddey, “ A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production, ” Applied Energy, 231, pp. 502-533 (2018). [37.] P. Nikolaidis, A. Poullikkas, “ A comparative overview of hydrogen production processes, ” Renewable and Sustainable Energy Reviews, 67, pp. 597-611 (2017). [38.] H. Ito, N. Kawaguchi, S. Someya, T. Munakata, “ Pressurized operation of anion exchange membrane water electrolysis, ” Electrochimica Acta, 297, pp. 188-196 (2019). [39.] A. A. Kalinnikov, S. A. Grigoriev, D. G. Bessarabov, “ Nonequilibrium poroelectroelastic theory for polymer electrolytes under conditions of water electrolysis, ” International Journal of Hydrogen Energy, 44, pp. 7889-7904 (2019). [40.] T. Fujimura, W. Hikima, Y. Fukunaka, T. Homma, “ Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes, ” Electrochemistry Communications, 101, pp. 43-46 (2019). [41.]M. Möckl, M. Bernt, J. Schröter, A. Jossen, “ Proton exchange membrane water electrolysis at high current densities: investigation of thermal limitations, ” International Journal of Hydrogen Energy, 45, pp. 1417-1428 (2020). [42.] T. Fujimura, W. Hikima, Y. Fukunaka, T. Homma, “ Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes, ” Electrochemistry Communications, 101, pp. 43-46 (2019). [43.]M. C. Saccardo, A. G. Zuqello, K. A. Tozzi, R. Goncalves, L. A. Hirano, C. H. Scuracchio, “ Counter-ion and humidity effects on electromechanical properties of Nafion®/Pt composites, ” Materials Chemistry and Physics, 244, pp. 122674-122682 (2020). [44.] S. Giancola, M. Zatoń, Á. R. Carmona, M. Dupont, A. Donnadio, S. Cavaliere, J. Rozière, D. J. Jones, “ Composite short side chain PFSA membranes for PEM water electrolysis, ” Journal of Membrane Science, 570-571, pp. 69-76 (2019). [45.] M. Müller, M. Carmo, A. Glüsen, M. Hehemann, S. Saba, W. Zwaygardt, D. Stolten, “ Water management in membrane electrolysis and options for advanced plants, ” International Journal of Hydrogen Energy, 44, pp. 10147-10155 (2019). [46.]M. Sartory, E. W. Ogris, P. Salman, T. Fellinger, M. Justl, A. Trattner, M. Klell, “ Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar, ” International Journal of Hydrogen Energy, 42, pp. 30493-30508 (2017). [47.] Z. Dobó, Á. B. Palotás, “ Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis, ” International Journal of Hydrogen Energy, 41, pp. 11849-11856 (2016).
[48.]F. E. Chakik, M. Kaddami, M. Mikou, “ Effect of operating parameters on hydrogen production by electrolysis of water, ” International Journal of Hydrogen Energy, 42, pp. 25550-25557 (2017). [49.] S. Dahbia, R. Aboutnia, A. Aziza, N. Benazzia, M. Elhafyanib, K. Kassmia, “ Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller, ” International Journal of Hydrogen Energy, 41, pp. 20858-20866 (2016). [50.] P. Trinke, B. Bensmann, R. H. Rauschenbach, “ Experimental evidence of increasing oxygen crossover with increasing current density during PEM water electrolysis, ” Electrochemistry Communications, 82, pp. 98-102 (2017). [51.] D. Ferrero, M. Santarelli, “ Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells, ” Energy Conversion and Management, 148, pp. 16-29 (2017). [52.] S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, P. Millet, “ Current status, research trends, and challenges in water electrolysis science and technology, ” International Journal of Hydrogen Energy (2020). (Article in press) [53.] Y. Huang, L. Wang, Y. Hou, W. Zhang, Y. Zhang, “ A prototype IOT based wireless sensor network for traffic information monitoring, ” International Journal of Pavement Research and Technology, 11, pp. 146-152 (2018). [54.] E. Jafer, C. S. Ibala, “ Design and development of multi-node based wireless system for efficient measuring of resistive and capacitive sensors, ” Sensors and Actuators A, 189, pp. 276-287 (2013). [55.] Y. Huang, W. Dong, T. Huang, Y. Wang, L. Xiao, Y. Su, Z. Yin, “ Self-similar design for stretchable wireless LC strain sensors, ” Sensors and Actuators A, 224, pp. 36-42 (2015). [56.] M. E. Youssef, R. S. Amin, K. M. E. Khatib, “ Development and performance analysis of PEMFC stack based on bipolar plates fabricated employing different designs, ” Arabian Journal of Chemistry, 11, pp. 609-614 (2018). [57.] C. Min, J. He, K. Wang, L. Xie, X. Yang, “ A comprehensive analysis of secondary flow effects on the performance of PEMFCs with modified serpentine flow fields, ” Energy Conversion and Management, 180, pp. 1217-1224 (2019). [58.] S. Chen, Z. Xia, X. Zhang, Y. Wu, “ Numerical studies of effect of interdigitated flow field outlet channel width on PEM fuel cell performance author links open overlay panel, ” Energy Procedia, 158, pp. 1678-1684 (2019). [59.] H. Sadeghifar, N. Djilali, M. Bahrami, “ Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load, ” Journal of Power Sources, 273, pp. 96-104 (2015). [60.] M. Kim, J. W. Lim, D. G. Lee, “ Electrical contact resistance between anode and cathode bipolar plates with respect to surface conditions, ” Composite Structures, 189, pp. 79-86 (2018). [61.] Q. Lei, B. Wang, P. Wang, S. Liu, “ Hydrogen generation with acid/alkaline amphoteric water electrolysis, ” Journal of Energy Chemistry, 38, pp. 162-169 (2019). [62.] M. K. Cho, H. Y. Park, S. Choe, S. J. Yoo, J. Y. Kim, H. J. Kim, D. Henkensmeier, S. Y. Lee, Y. E. Sung, H. S. Park, J. H. Jang, “ Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis, ” Journal of Power Sources, 347, pp. 283-290 (2017). [63.] P. Lettenmeier, S. Kolb, F. Burggraf, A. S. Gago, K. A. Friedrich, “ Towards developing a backing layer for proton exchange membrane electrolyzers, ” Journal of Power Sources, 311, pp. 153-158 (2016). [64.] O. F. Selamet, M. S. Ergoktas, “ Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers, ” Journal of Power Sources, 281, pp. 103-113 (2015). [65.] L. Allidières, A. Brisse, P. Millet, S. Valentin, M. Zeller, “ On the ability of PEM water electrolysers to provide power grid services, ” International Journal of Hydrogen Energy, 44, pp. 9690-9700 (2019). [66.]G. S. Ogumerem, E. N. Pistikopoulos “Parametric optimization and control for a smart Proton Exchange Membrane Water Electrolysis (PEMWE) system, ” Journal of Process Control, 91, pp. 37-49 (2020)
|