跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:區旭灝
研究生(外文):AU YUK HO
論文名稱:消費者對網路的誘餌效應、正向情緒及網路口碑影響之研究-以群體別為干擾變數
論文名稱(外文):Research on the influence of consumers’ Decoy Effect, Positive Emotion and Internet Word-of-Mouth on internet-groups as intervene variable
指導教授:李建中李建中引用關係
指導教授(外文):LEE CHIEN CHUNG
口試委員:藍天雄藍俊雄
口試委員(外文):LAN TIAN SHUNGLAN CHUN HSIUNG
口試日期:2021-07-09
學位類別:碩士
校院名稱:真理大學
系所名稱:企業管理學系碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:誘餌效應正向情緒網絡口碑
外文關鍵詞:Decoy EffectPositive EmotionInternet Word of Mouth
相關次數:
  • 被引用被引用:1
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:132
  • 收藏至我的研究室書目清單書目收藏:0
在日常生活中,身為消費者的我們在購物時,經常會被一些行銷策略所引導我們做出選擇;例如:在買一杯咖啡,有大、中、小三種容量——中杯價格幾乎和大杯差不多因此大多數人會選擇最大杯最貴, 此為「誘餌效應」的認知偏見。

現今網路上更存在商家使用無所不用其極的行銷方式如上述誘餌效應、網路口碑、正向情緒操作方式等來影響消費者網路購買決策,而已有許多學者提出在不同族群間網路行銷影響是有差異的,故本研究加入族群因素做驗證性分析。

本研究暨屬驗證性分析便建立問卷,使用二階段集群分析法將275個樣本分為三群並分別命名,再做迴歸分析找出影響每一集群應變數的顯著相關自變數後做變異數分析找出三群迴歸變數的差異性,如具顯著差異再做Scheffe事後檢定。

本研究結果有下列發現:
1. 三集群間變數具有顯著差異的有三個變數誘餌效應、網路口碑、正向情緒各一個。
2. 三集群間變數不具有顯著差異的有四個變數誘餌效應一、網路口碑一、正向情緒二個。
3. 三集群間變數具有顯著差異的發展差異性網路行銷策略。
4. 三集群間變數不具有顯著差異的發展共同性網路行銷策略。
In our daily life, as consumers, when we are shopping, we are often guided by some marketing strategies to make choices; for example, when buying a cup of coffee, there are three sizes: large, medium, and small—the price of a medium cup is almost the same as that of a large cup. The cup is almost the same, so most people choose the largest cup the most expensive. This is the cognitive bias of the " decoy effect".

Nowadays, there are businesses on the Internet that use ubiquitous marketing methods, such as the above-mentioned decoy effect, Internet word-of-mouth, and positive emotional operation methods to influence consumers’ online purchasing decisions. Many scholars have proposed to network between different ethnic groups. Marketing influences are different, so this study adds ethnic factors for confirmatory analysis.

In this study and a confirmatory analysis, a questionnaire was established. The two-stage cluster analysis method was used to divide 275 samples into three groups and named separately, and then regression analysis was performed to find the significant correlation independent variable that affects the strain number of each cluster, and then the variance was calculated. Analyze and find the difference of the regression variables of the three groups, if there is a significant difference, do the Scheffe post-test.

The results of this study have the following findings:
1. There are three variables that have significant differences between the three clusters: decoy effect, Internet word-of-mouth, and positive sentiment.
2. There are four variables that have no significant difference between the three clusters. There are one decoy effects. one. Internet word of mouth. two. Positive sentiment.
3. Development of differentiated Internet marketing strategies with significant differences in variables among the three clusters.
4. The development of common network marketing strategies with no significant difference in variables among the three clusters.
目錄
摘要 i
Abstract ii
致謝辭 iii
目錄 iv
圖表目錄 v
第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機 3
第三節 研究目的 5
第貳章 文獻探討 9
第一節 誘餌效應之相關文獻探討 9
第二節 正向情緒之相關文獻探討 12
第三節 網路口碑之相關文獻探討 18
第四節 國內碩士相關文獻 23
第叄章 研究方法 28
第一節 研究架構 28
第二節 研究流程 29
第三節 研究內容 30
第肆章 研究結果 31
第一節 樣本人口統計分析部份 32
第二節 集群分析 33
第三節 迴歸分析 36
第四節 變異數分析 40
第伍章 結論與建議 48
第一節 研究結論 48
第二節 研究建議 53
參考文獻 56
中文部份 56
外文部份 59
附錄一 問卷 66

表目錄
表2-1 學者們對誘餌效應的定義 9
表2-2 學者們對正向情緒的定義 15
表2-3 網路口碑定義之轉變 20
表2-4 其他學者相關文獻 23
表4-1 信度值表 31
表4-2 男女比例 32
表4-3 打工比例 32
表4-4 每月可支配收入比例 32
表4-5 學生身份比例 32
表4-6 TwoStep叢集表 33
表4-7 各群集命名表 35
表4-8 Group1迴歸分析表 36
表4-9 Group2迴歸分析表 37
表4-10 Group3迴歸分析表 39
表4-11 變異數分析表 40
表4-12 變異數分析–事後分析Scheffe法 42
表4-13 變異數分析彙總表 43
表4-14 重要性與各集群關係表 45
表4-15 控制變數各群統計表 46
表5-1 各集群主要區隔變數表 48
表5-2 共同變數之網路行銷策略 49
表5-3 不同群體差異變數之網路差異行銷策略 50

圖目錄
圖3-1 研究架構圖 29
圖3-2 研究流程圖 30
圖4-1 Cluster 圖 34

參考文獻

一、中文部份
[1] 方世榮,張苑惠(2006),“網絡口碑形成之影響因素:以網絡涉入程度與虛擬社群管理為干擾因素”,電子商務學報,冊8(4),頁499-532。

[2] 吳佳勳(2012),“消費者對網路廣告之情緒和視覺反應和衝動性購買行為之實證研究”,玄装大學資訊管理學系,碩士論文。

[3] 林星帆(2013),《晨晰統計部落格新站-統計、SPSS、BIG DATA討論園地》。

[4] 姜重裕(2011),“羅東夜市之遊客認知與滿意度研究”,國立宜蘭大學建築與永續規劃研究所,碩士論文。

[5] 姜玟安(2020),“網路口碑、品牌態度、手遊成癮對手機遊戲內購買意圖的影響:以知覺價值為中介變項”,國立台北商業大學國際商務系碩士班碩士論文。

[6] 陳之婷(2012),“影響妥協效果的因子:對失業率和通貨膨脹率間兌換關係之初步探討”,國立中山大學經濟學研究所,碩士論文。

[7] 陳韋婷(2013),“以眼動研究情緒對誘餌效應的影響”,國立中山大學資訊管理學系,碩士論文。

[8] 陳柏丞(2020),“色彩計畫與誘餌效應之關聯性研究─以特斯拉電動車為例”,大同大學工業設計研究所,碩士論文。

[9] 黃瑜峰、陳韋婷、郭峰淵(2013),“正向情緒與誘餌效應對消費者決策行為的影響”,中山管理評論,第二十一卷第四期,頁743-767。

[10] 施沛如(2020),“奢侈品品牌態度、名人代言、網路口碑及社交媒體使用強度對購買意圖影響之研究”,國立高學科技大學資訊管理系電子商務碩士班,碩士論文。

[11] 詹文男(2014),《台灣地區使用網路的消費族群進行「網路社群口碑需求」調查》,來源自「資策會產業情報研究所」(Market Intelligence & Consulting Institute, MIC)成立於1987年。

[12] 劉丁己(2019),《巧妙定價促進銷售》,澳門日報。

[13] 劉思妤(2019),“網路口碑與產品銷售關係之研究─以高科技產品為干擾變數”,東吳大學企業管學系碩士班,碩士論文。

[14] 薛任慈、王天津、吳昭彥(2009),“網路口碑對消費者購買決策影響之研究”,義守大學資訊管理學系碩士班,學術論文。

[15] 羅凱揚,蘇宇暉,鍾皓軒(2019) ,《大數據x市場分析x人工智慧》,行銷資料科學,碁峰出版社。

二、外文部分
[1] Anderson, Eugene (1998). “Customer Satisfaction and Word of Mouth.” Journal of Service Research 1(1): 5-17. <http://hdl.handle.net/2027.42/68654>

[2] Ariely, D. (2008). Predictably irrational: The hidden forces that shape our decisions. HarperCollins Publishers.

[3] Barbara L. Fredrickson. (2001) “The Role of Positive Emotions in Positive Psychology the Broaden-and-Build Theory of Positive Emotions”.

[4] Cronbach, L. J. (1943). On estimates of test reliability. Journal of Educational Psychology, 34(8), 485–494. https://doi.org/10.1037/h0058608

[5] Chaiken, S., & Eagly, A. H. (1976). Communication modality as a determinant of message persuasiveness and message comprehensibility. Journal of Personality and Social Psychology, 34(4), 605–614.

[6] Costa, P. T., & McCrae, R. R. (1986). Cross-sectional studies of personality in a national sample: I. Development and validation of survey measures. Psychology and Aging, 1(2), 140–143.

[7] Carstensen, L. L. and Mikels, J. A. (2005). “At the intersection of emotion and cognition aging and the positivity effect.”. Current Directions in Psychological Vol.14, No. 3, pp.117-121.

[8] Cheung, C. M., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461-470.

[9] Christopher and Gu, Day, Qing and Sammons, Pam (2016) The impact of leadership on student outcomes: how successful school leaders use transformational and instructional strategies to make a difference. Educational Administration Quarterly, 52 (2). pp. 221-258. ISSN 1552-3519

[10] Chandrasapth K., Yannopoulou N., Schoefer K., Kelsey D. (2020) The Power of Collective Brand Defending in Mitigating Negative eWOM: An Abstract. In: Wu S., Pantoja F., Krey N. (eds) Marketing Opportunities and Challenges in a Changing Global Marketplace. AMSAC 2019. Developments in Marketing Science: Proceedings of the Academy of Marketing Science. Springer, Cham.

[11] Chunhua Wu and Koray Cosguner. (2020) Profiting from the Decoy Effect: A Case Study of an Online Diamond Retailer. Marketing Science 39 (5) 974-995.

[12] Do-Hyung Park, Jumin Lee & Ingoo Han (2007) The Effect of On-Line Consumer Reviews on Consumer Purchasing Intention: The Moderating Role of Involvement, International Journal of Electronic Commerce, 11:4, 125-148, DOI: 10.2753/JEC1086-4415110405

[13] Doh, S.J. and Hwang, J.S. (2009) How Consumers Evaluate eWOM (Electronic Word-of-Mouth) Messages. Cyberpsychology & Behavior, 12, 193-197.

[14] David Robson, (2019) Aug 2nd “The trick that makes you overspend” BBC Worklife.

[15] Data Engineering and Communication Technology pp 801-810(2020) Real-Time Aspect-Based Sentiment Analysis on Consumer Reviews Jitendra Kalyan Prathi, Pranith Kumar Raparthi, M. Venu Gopalachari.

[16] Elsbach, K. D., & Barr, P. S. (1999). The effects of mood on individuals' use of structured decision protocols. Organization Science, 10(2), 181–198.

[17] eWOM: The impact of customer-to-customer online know-how exchange on customer value and loyalty (2006) April, Journal of Business Research 59(4):449-456.

[18] Elvira Ismagilova Yogesh K. Dwivedi Emma Slade Michael D. Williams (2017). Electronic Word of Mouth (eWOM) in the Marketing Contex.EBook ISBN 978-3-319-52459-7.

[19] Fredrickson, B. L. (2001). The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. American Psychologist, 56(3), 218–226.

[20] Fredrickson, B. L. (2009). Positivity “Groundbreaking research reveals how to embrace the hidden strength of positive emotions, overcome negativity, and thrive” Crown Publishers/Random House.

[21] Fredrickson, B. L. (2013). Positive emotions broaden and build. Advances in Experimental Social Psychology, 47(1), 53.

[22] Gelb, B., & Johnson, M. (1995). Word-of-mouth communication: Causes and consequences. Journal of Health Care Marketing, 15(Fall), 54-58.

[23] Gelb, B. D., & Sundaram, S. (2002). Adapting to word of mouse. Business Horizons, 45(4), 21-25.

[24] George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4th ed.). Boston: Allyn & Bacon.

[25] Huber, J., Payne, J. W., and Puto, C., (1982), “Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis,” Journal of Consumer Research, Vol. 9, No. 1, 90-98.

[26] Hanson, W. A., (2000), Principles of Internet Marketing, Ohio: South-Western College Publishing.

[27] Hedgcock, W. and Rao, A.R. (2009) Trade-Off Aversion as an Explanation for the Attraction Effect: A Functional Magnetic Resonance Imaging Study. Journal of Marketing Research, 46, 1-13.

[28] Huber J., Payne J. W., & Puto C. P. (2014). Let’s be honest about the attraction effect. Journal of Marketing Research, 51(4), 520–525.

[29] Herter M., Santos C.P.., Costa D. (2015) “Man, I Shop Like a Woman!” Effects of Gender and Emotions on Consumer Shopping Outcomes and Perceptions of Retail Environments.

[30] JOURNAL ARTICLE Gauss and the Invention of Least Squares Stephen M(1981) Stigler the Annals of Statistics Vol. 9, No. 3 May, 1981, pp. 465-474 (10 pages) Published By: Institute of Mathematical Statistics.

[31] Journal of Consumer Research, Volume 9, Issue 2, September (1982), Pages 183–194.

[32] Katz, Elihu/Lazarsfeld, Paul F. (1955): Personal Influence. The Part Played by People in the Flow of Mass Communication. New York: Free Press.

[33] Kleinginna, P.R., Kleinginna, A.M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motiv Emot 5, 345–379.

[34] Katya Tentoria, Daniel Osherson, Lynn Hasher and Cynthia May (2001). Brief article Wisdom and aging: irrational preferences in college students but not older adults. Volume 81, Issue 3, October 2001, Pages B87-B96.

[35] Kemppainen T., Makkonen M., Frank L. (2021) Customer Experience Formation in Online Shopping: Investigating the Causes of Positive and Negative Emotions During a Visit to an Online Store. In: Metallo C., Ferrara M., Lazazzara A., Za S. (eds) Digital Transformation and Human Behavior. Lecture Notes in Information Systems and Organisation, vol 37. Springer, Cham.

[36] Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology, 140, 1–55.

[37] Lang, P. J., Bradley, M. M., and Cuthbert, B. N., (1999), International affective picture system (IAPS): Instruction manual and affective ratings, 1st, Gainesville, FL: The Center for Research in Psychophysiology of University of Florida.

[38] Laura L. Carstensen, Joseph A. Mikels. (2005) At the Intersection of Emotion and Cognition: Aging and the Positivity Effect. First Published June 1, 2005

[39] Laurel West (2014) VIP Shop report Chinese Dec15 V01.The Economist Intelligence Unit (The EIU).

[40] Linda W. Chang, Mina Cikara (2018), “Journal of Personality and Social Psychology” 206-223.

[41] Łącka-Badura J. (2020) Online Word of Mouth as a Source of Employment Information: A Comparative Analysis of the Language of Values in Employee Reviews and Testimonials. In: Michalik U., Zakrajewski P., Sznicer I., Stwora A. (eds) Exploring Business Language and Culture. Second Language Learning and Teaching. Springer, Cham.

[42] Maddux, J. E., & Rogers, R. W. (1983). Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. Journal of Experimental Social Psychology, 19(5), 469–479. https://doi.org/10.1016/0022-1031(83)90023-9

[43] Margaret M. Bradley and Peter J. Lang, (2000) “Affective reactions to acoustic stimuli” 204–215.

[44] Mandel, N. and Johnson, E. J. (2002) “When web pages influence choice: Effects of visual primes on experts and novices,” Journal of Consumer Research, Vol. 29, No. 2, 235-245.

[45] Milberg S. J., Silva M., Celedon P., & Sinn F. (2014). Synthesis of attraction effect research: Practical market implications? European Journal of Marketing, 48 (7/8), 1413–1430.

[46] Moliner-Velázquez, B., Fuentes-Blasco, M. & Gil-Saura, I. (2021) Segmenting customers according to online word-of-mouth about hotels. Serv Bus 15, 103–130.

[47] Pappas, I.O., Kourouthanassis, P.E., Giannakos, M.N. et al. (2014) Shiny happy people buying: the role of emotions on personalized e-shopping. Electron Markets 24, 193–206.

[48] R. A. Fisher (1996) in the 21st Century Invited Paper Presented at the 1996 R. A. Fisher Lecture. Statistical Science 1998, Vol. 13, No. 2, 95-122

[49] Racherla, P., Mandviwalla, M., & Connolly, D. J. (2012). Factors affecting consumers' trust in online product reviews. Journal of Consumer Behaviour, 11(2), 94–104.

[50] Seligman, M. E. P. (2002). Positive psychology, positive prevention, and positive therapy. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 3–9). Oxford University Press.

[51] Schwartz, Barry. (2004) The Paradox of Choice: Why More Is Less,ISBN:9780060005696.
[52] Sook Jung Lee (2009) Journal of Computer-Mediated Communication, Volume 14, Issue 3, 1 April 2009, Pages 509–531.

[53] Tentori, K., Osherson, D., Hasher, I., and May, C., (2001).“Wisdom and aging: Irrational preferences in college students but not older adults.”Cognition, Vol. 81, No. 3, pp.87-96.

[54] Thaler R. H., & Sunstein C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. New Haven, CT: Yale University Press.

[55] Tingting Nian, Yuheng Hu, Cheng Chen (2021) Examining the Impact of Television-Program-Induced Emotions on Online Word-of-Mouth Toward Television Advertising. Information Systems Research 32 (2) 605-632.

[56] Wegener, D. T., & Petty, R. E. (1994) Mood management across affective states: The hedonic contingency hypothesis. Citation.

[57] Wu, Koray, Chunhua and Cosguner, (2018) October 22, Profiting from the Decoy Effect “A Case Study of the Online Diamond Marketplace”.

[58] Yang S.S., & Lynn M. (2014) More Evidence Challenging the Robustness and Usefulness of the Attraction Effect. Journal of Marketing Research, 51(4), 508–513.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊