跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁奕榮
研究生(外文):Ting, I-Jung
論文名稱:利用數位液滴介電潤濕紙基晶片開發自動化微型化學放光偵測系統
論文名稱(外文):Development of Automated Miniaturized Chemiluminescence Detection System Using Digital Droplet-Based Electro-wetting on Paper-based Microchip
指導教授:王少君王少君引用關係
指導教授(外文):Wang, Shau-Chun
口試委員:周禮君黃正良
口試委員(外文):Chau, Lai-KwanHuang, Cheng-Liang
口試日期:2020-09-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:68
中文關鍵詞:介電潤濕數位液滴化學放光實驗室晶片
外文關鍵詞:Electro-wetting on dielectric (EWOD)Digital dropletchemiluminescenceLab on a chip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究是開發一種在介電潤濕裝置上的化學放光偵測系統,實驗是使用共平面 (coplanar) 的電潤濕晶片進行液滴的操作,經使用噴墨印表機與銀奈米粒子墨水噴印出電極圖形,貼上聚四氟乙烯(PTFE)膜作為介電層並塗佈矽油作為疏水層,將液滴滴在電極圖形二端,將相鄰的二個電極作為控制電極 (control electrode) 與接地電極 (ground electrode),使用Arduino軟體控制晶片上電極的電壓使液滴移動到目標位置利用液滴接觸線在施加頻率(< 200 Hz)電壓而變動的過程中,在液滴表面生成的毛細管波(capillary wave)用以劇烈震盪液滴,充分混合結合後液滴內的溶質產生化學放光。我們利用水熱法合成出的銅鈷奈米材料作為催化劑進行luminol化學放光實驗,使用低頻率(50 Hz)致動電壓混合液滴進行化學放光實驗,發現可以有效提高混合效率與放光信號的再現性。我們結合介電潤濕混合器與化學放光方法進行肌鈣蛋白I (cardiac troponin I,cTnI)樣品濃度偵測,將帶有硫醇基 (thiol) 的aptamer修飾上銅鈷奈米材料,aptamer另一端與分析物cTnI結合,造成立體障礙效應使得luminol不易被催化導致放光強度下降,利用化學放光強度的差異即可測量出樣品的濃度。施加約200 V的交流電(50 Hz)使液滴移動,利用電潤濕晶片將接合aptamer的官能化銅鈷奈米材料以及肌鈣蛋白I的溶液的液滴與另一個luminol與過氧化氫的液滴混合反應產生化學放光。經智慧型手機相機拍攝放光過程用以測量肌鈣蛋白I的濃度。藉由電潤濕晶片可使液滴快速混合均勻,以提高放光信號的再現性,進而提高檢量線的線性程度。本研究有潛力提供一個簡單檢測量肌鈣蛋白I濃度的方式,而且只需方便攜帶的儀器即可完成,當實際應用於偵測cTnI,經過實驗條件優化後可得到良好的線性R2 = 0.92,偵測範圍為3~300 nM。相較於未經充分混合下的半定量結果,顯現了電潤濕混合裝置應用於化學方法的優勢。
This work is to develop a disposable chemiluminescence (CL) system on dielectric wetting on dielectrics (EWOD) based paper microchip. The electrodes composed of interdigitated pads are fabricated with silver nanoparticles using inkjet printing method. The control electrodes can be deposited on glossy label paper, where one piece of stretched polymeric film is then adhered by applying silicone oil on the chip surface as dielectric layer. Then silicone oil (5 cSt) is covered on the film to work as hydrophobic layer. Having individually delivered the droplets on the ends of two EWOD electrodes, we activated and grounded the pairs of two adjacent electrode pads, using Arduino board to address the proper actuated voltages on the electrode pads to manipulate droplets to the designated position. Using capillary wave on the droplet contact line changes when low frequency AC voltage (< 200 Hz) is applied across two actuation pads mix the merged droplet. Cu/Co nanorods were prepared by hydrothermal method as CL reaction catalyst when luminol is oxidized with H2O2. One droplet containing luminol and H2O2 was driven using 50 Hz AC voltage (200 Vrms) to merge with the other droplet containing Cu/Co nanorods to mix vigorously to produce the emission of CL signal. We found that using low-frequency AC voltages to mixing reactants and catalysts in the combined droplet can effectively improve mixing efficiency and CL intensity reproducibility because of sufficient solute transport acceleration. We have also investigated using aptamer-derived Cu/Co nanorods to detect cardiac troponin I (cTnI) with luminol CL emission signals. When cTnI analytes were docked with immobilized aptamers on nanorod surfaces, the contacts of luminol with the catalyst were hindered to reduce CL emission intensities. Preliminary validation results of CL assay to determine cTnI were discussed to evaluate potential applications. With sufficient mixing using our EWOD device, the standard curve spanning for two orders of magnitude dynamic range(3 nM to 300 nM) possesses acceptable linearity (R2 ~ 0.92) to detect cTnI.
中文摘要 i
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 xi
1. 緒論 1
1.1前言 1
1.2 原理 4
2. 實驗架構與實驗方法 17
2.1 介電潤濕晶片設計與製作過程 17
2.2實驗系統架設 21
2.3 樣品簡介與配製 27
2.4 Cu/Co 奈米棒合成 29
2.5 Cu/Co奈米棒表面生化修飾 30
2.6 Arduino操控程式及數據處理 31
3. 實驗結果與討論 33
3.1 介電層優化 33
3.2 Cu/Co nanorod性質 34
3.3 介電潤濕晶片結合luminol化學放光之實驗結果 36
3.4 利用EWOD裝置使用化學放光方法偵測肌鈣蛋白Cardiac troponin I 42
5. 參考文獻 53
6. 附錄 56

1.Manz, A.; Graber, N.; Widmer, H. á., Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical 1990, 1 (1-6), 244-248.
2.Sista, R. S.; Wang, T.; Wu, N.; Graham, C.; Eckhardt, A.; Winger, T.; Srinivasan, V.; Bali, D.; Millington, D. S.; Pamula, V. K., Multiplex newborn screening for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases using a digital microfluidic platform. Clinica Chimica Acta 2013, 424, 12-18.
3.Hua, Z.; Rouse, J. L.; Eckhardt, A. E.; Srinivasan, V.; Pamula, V. K.; Schell, W. A.; Benton, J. L.; Mitchell, T. G.; Pollack, M. G., Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Analytical chemistry 2010, 82 (6), 2310-2316.
4.Sista, R. S.; Eckhardt, A. E.; Srinivasan, V.; Pollack, M. G.; Palanki, S.; Pamula, V. K., Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab on a Chip 2008, 8 (12), 2188-2196.
5.Srinivasan, V.; Pamula, V. K.; Fair, R. B., Droplet-based microfluidic lab-on-a-chip for glucose detection. Analytica Chimica Acta 2004, 507 (1), 145-150.
6.Ng, A. H.; Li, B. B.; Chamberlain, M. D.; Wheeler, A. R., Digital microfluidic cell culture. Annual review of biomedical engineering 2015, 17, 91-112.
7.Cho, S. K.; Moon, H.; Kim, C.-J., Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical systems 2003, 12 (1), 70-80.
8.Velev, O. D.; Prevo, B. G.; Bhatt, K. H., On-chip manipulation of free droplets. Nature 2003, 426 (6966), 515-516.
9.Jones, T. B.; Fowler, J. D.; Chang, Y. S.; Kim, C.-J., Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 2003, 19 (18), 7646-7651.
10.Pollack, M. G.; Shenderov, A. D.; Fair, R. B., Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip 2002, 2 (2), 96-101.
11.Washizu, M., Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE transactions on industry applications 1998, 34 (4), 732-737.
12.Torkkeli, A.; Saarilahti, J.; Haara, A.; Harma, H.; Soukka, T.; Tolonen, P. In Electrostatic transportation of water droplets on superhydrophobic surfaces, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 01CH37090), IEEE: 2001; pp 475-478.
13.Fowler, J.; Moon, H.; Kim, C.-J. In Enhancement of mixing by droplet-based microfluidics, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 02CH37266), IEEE: 2002; pp 97-100.
14.Paik, P.; Pamula, V. K.; Pollack, M. G.; Fair, R. B., Electrowetting-based droplet mixers for microfluidic systems. Lab on a Chip 2003, 3 (1), 28-33.
15.Malk, R.; Rival, A.; Fouillet, Y.; Davoust, L. In EWOD in coplanar electrode configurations, International Conference on Nanochannels, Microchannels, and Minichannels, 2010; pp 239-248.
16.Davoust, L.; Fouillet, Y.; Malk, R.; Theisen, J., Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow pattern. Biomicrofluidics 2013, 7 (4), 044104.
17.Karabchevsky, A.; Mosayyebi, A.; Kavokin, A. V., Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles. Light: Science & Applications 2016, 5 (11), e16164-e16164.
18.Gao, W.; Qi, W.; Lai, J.; Qi, L.; Majeed, S.; Xu, G., Thiourea dioxide as a unique eco-friendly coreactant for luminol chemiluminescence in the sensitive detection of luminol, thiourea dioxide and cobalt ions. Chemical Communications 2015, 51 (9), 1620-1623.
19.Maeztu, R.; Tardajos, G.; González-Gaitano, G., Natural cyclodextrins as efficient boosters of the chemiluminescence of luminol and isoluminol: exploration of potential applications. The Journal of Physical Chemistry B 2010, 114 (8), 2798-2806.
20.Lin, J.-M.; Shan, X.; Hanaoka, S.; Yamada, M., Luminol chemiluminescence in unbuffered solutions with a cobalt (II)− ethanolamine complex immobilized on resin as catalyst and its application to analysis. Analytical chemistry 2001, 73 (21), 5043-5051.
21.White, E. H.; Zafiriou, O.; Kagi, H. H.; Hill, J. H., Chemilunimescence of luminol: The chemcial reaction. Journal of the American Chemical Society 1964, 86 (5), 940-941.
22.Chang, C. A.; Patterson, H. H., Halide ion enhancement of chromium (III), iron (II), and cobalt (II) catalysis of luminol chemiluminescence. Analytical Chemistry 1980, 52 (4), 653-656.
23.Li, Z.; Niu, Q., Ionic liquid-assisted synthesis of Au–Pt bimetallic particles for enhanced methanol electrooxidation. ACS Sustainable Chemistry & Engineering 2014, 2 (3), 533-536.
24.Li, X.; Liu, B.; Hun, X., Bimetallic nanomaterials as nanocatalysts and the carrier coupling chemiluminescence aptamer strategy for cancer cell detection. Sensors and Actuators B: Chemical 2018, 277, 510-516.
25.Du, X.; Jiang, D.; Hao, N.; Qian, J.; Dai, L.; Zhou, L.; Hu, J.; Wang, K., Building a three-dimensional nano–bio Interface for aptasensing: an analytical methodology based on steric hindrance initiated signal amplification effect. Analytical chemistry 2016, 88 (19), 9622-9629.
26.Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.-K.; Lee, J.; Shin, J. H.; Ban, C., Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Analytical chemistry 2015, 87 (19), 9869-9875.
27.Liu, B.; Li, X.; Liu, S.; Hun, X., A chemiluminescence aptasensor based on Cu/Co nanorods for microcystin-RR detection. Microchemical Journal 2019, 145, 648-654.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊