跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳孟霖
研究生(外文):WU, MENG-LIN
論文名稱(外文):(B, N)-doped Graphene as Cathode Materials of Aluminum-ion Batteries
指導教授:李錫隆李錫隆引用關係
指導教授(外文):LEE, SHYI-LONG
口試委員:王伯昌楊昌中
口試委員(外文):WANG, BO-CHENGYANG, CHANG-CHUNG
口試日期:2021-09-03
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:82
中文關鍵詞:第一原理鋁離子電池陰極材料硼氮摻雜石墨烯
外文關鍵詞:First-principlealuminum ion batterycathode material(B, N)-doped graphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究以硼氮摻雜之石墨烯做為鋁離子電池之陰極材料,使用VASP軟體搭配密度泛函理論中廣義梯度近似(GGA)之Perdew-Burke-Ernzerhof(PBE)方法,計算硼氮摻雜濃度、硼氮摻雜之石墨烯及四氯化鋁離子結構、總自由能、共聚能、嵌入行為、遷移能障、疊層數以及理論電壓。四氯化鋁離子以tetrahedron lying結構嵌入硼氮摻雜石墨烯,且四氯化鋁離子之所有原子皆嵌入在硼氮摻雜石墨烯之中空位點。四氯化鋁離子遷移最小能障為0.2 電子伏特。最佳之疊層數為1,理論電壓為3.9 伏特。
In this work, first-principles calculations were performed to examine (B, N)-doped graphene as cathode materials of aluminum-ion batteries. Stacking mode, geometry and intercalation sites of intercalant, intercalation configuration, migration path, stage number and theoretical voltage are determined. It is revealed that BN3G possess larger cohesive energy than B3N6G and B12N12G. For geometry of intercalant, tetrahedron lying AlCl4⁻ has the lowest total free energy. As for intercalation sites of intercalant, all atoms intercalated at hollow sites of (B, N)-doped graphene. For migration path, Path PA1 has lowest migration energy barriers with 0.20 eV. Stage-1 is most favorable with the theoretical voltage 3.9 V.
Acknowledgement I
Contents II
Content of Figures IV
Content of Tables V
摘要 VI
Abstract VII
Chapter 1 Introduction 1
Chapter 2 Computational Methods 4
2.1 Details of the calculations 4
2.2 Density Functional Theory 5
2.2.1 Hohenberg-Kohn theorem 5
2.2.2 Kohn and Sham approach 6
2.2.3 Generalized gradient approximation 8
2.3 Vienna Ab Initio Simulation Package (VASP) 13
2.4 Plane-wave Pseudopotential Method 16
2.4.1 Projector Augmented Wave (PAW) Method 17
2.5 Bloch's theorem 19
2.6 Atomic positions and Wyckoff positions 21
2.7 Calculation of Binding Energy ( Ebinding ) and Cohesive energy ( Ecoh ) 26
2.8 Calculation of Voltage 28
Chapter 3 Results and discussion 29
3.1 The optimized structure of (B, N)-doped graphene 29
3.2 Stacking of (B, N)-doped zigzag graphene 34
3.2.1 Optimized configuration of AA Stacking of (B, N)-doped zigzag graphene 36
3.2.2 Optimized configurations of AB Stacking of (B, N)-doped zigzag graphene 38
3.2.3 Summary of stacking of (B, N)-doped zigzag graphene 42
3.3 The geometry of AlCl4- intercalated in (B, N)-doped graphene 44
3.4 The intercalating configuration with AlCl4⁻ intercalated in (B, N)-doped graphene 48
3.4 Migration pathways of AlCl4- on (B, N)-graphene 63
3.4.1 Migration pathways along polyacenic direction 64
3.4.2 Migration paths along polyphenylic direction 67
3.4.3 Summary of migration paths along polyacenic and polyphenylic direction 70
3.5 The stacking stage and theoretical voltage of AlCl4⁻ intercalated in (B, N)-doped graphene 72
Chapter 4 Conclusion 78
Reference 79

1.Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chem. Mater., 2010, 22 (3), 587.
2.Goodenough, J. B.; Park, K. S., The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc., 2013, 135 (4), 1167.
3.Tarascon, J. M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 2001, 414, 359−367.
4.Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 2011, 4, 3243−3262.
5.Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y., A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol., 2015, 10, 980−985.
6.Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S., Research development on sodium-ion batteries. Chem. Rev., 2014, 114, 11636−11682.
7.Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T., Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci., 2013, 6, 2067−2081.
8.Nam, K. W.; Kim, S.; Yang, E.; Jung, Y.; Levi, E.; Aurbach, D.; Choi, J. W., Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries. Chem. Mater., 2015, 27, 3721−3725.
9.Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D., Mg Rechargeable Batteries: An On-Going Challenge. Energy Environ. Sci., 2013, 6, 2265−2279.
10.Tepavcevic, S.; Liu, Y.; Zhou, D.; Lai, B.; Maser, J.; Zuo, X.; Chan, H.; Král, P.; Johnson, C. S.; Stamenkovic, V.; Markovic, N. M.; Rajh, T., Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. ACS Nano, 2015, 9, 8194−8205.
11.Geng, L.; Lv, G.; Xing, X.; Guo, J., Reversible Electrochemical Intercalation of Aluminum in Mo6S8. Chem. Mater., 2015, 27, 4926−4929.
12.Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R.; Knipping, E.; Peters, W.; Drillet, J. F.; Passerini, S.; Hahn, R., An Overview and Future Perspectives of Aluminum Batteries. Adv. Mater., 2016, 28, 7564−7579.
13.Yang, S.; Knickle, H., Design and Analysis of Aluminum−Air Battery System for Electric Vehicles. J. Power Sources, 2002, 112, 162−173.
14.Li, Q.; Bjerrum, N. J., Aluminum as Anode for Energy Storage and Conversion: A Review. J. Power Sources, 2002, 110, 1−10.
15.Gifford, P. R.; Palmisano, J. B., An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte. J. Electrochem. Soc., 1988, 135, 650–654.
16.Jayaprakash, N.; Das, S. K.; Archer, L. A., The rechargeable aluminum-ion battery. Chem. Commun., 2011, 47, 12610–12612.
17.Rani, J. V.; Kanakaiah, V.; Dadmal, T.; Rao, M. S.; Bhavanarushi, S., Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum-Ion Battery. J. Electrochem. Soc., 2013, 160 (10), A1781–A1784.
18.Hudak, N. S., Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C, 2014, 118, 5203–5215.
19.Lin, M. C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D. Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B. J.; Dai, H.; et al., An Ultrafast Rechargeable Aluminium-Ion Battery. Nature, 2015, 520, 325−328.
20.Chen, H.; Xu, H.; Zheng, B.; Wang, S.; Huang, T.; Guo, F.; Gao, W.; Gao, C., Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. ACS Appl. Mater. Interfaces, 2017, 9, 22628.
21.Angell, M.; Pan, C. J.; Rong, Y.; Yuan, C.; Lin, M. C.; Hwang, B. J.; Dai, H., High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte Proc. Natl. Acad. Sci. USA, 2017, 114, 834.
22.Bhauriyal, P.; Mahata, A.; Pathak, B., The Staging Mechanism of AlCl4 Intercalation in Graphite Electrode for Aluminium-ion Battery. Phys. Chem. Chem. Phys., 2017, 19, 7980−7989.
23.Wang, D. Y.; Wei, C. Y.; Lin, M. C.; Pan, C. J.; Chou, H. L.; Chen, H. A.; Gong, M.; Wu, Y.; Yuan, C.; Angell, M.; Hsieh, Y. J.; et al., Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat. Commun., 2017, 8, 14283.
24.Agiorgousis, M. L.; Sun, Y. Y.; Zhang, S., The Role of Ionic Liquid Electrolyte in an Aluminum-Graphite Electrochemical Cell. ACS Energy Lett., 2017, 2 (3), 689–693.
25.洪瑄佑. Theoretical Calculation of Aluminum-Ion Battery In N-doped Graphene. 國立中正大學, 嘉義縣, 2020.
26.Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59 (3), 1758-1775.
27.Blochl, P. E., Projector augmented-wave method. Phys. Rev. B, 1994, 50, 17953.
28.Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49 (20), 14251-14269.
29.Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16), 11169-11186.
30.Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6 (1), 15-50.
31.Perdew, J. P; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77 (18), 3865-3868.
32.Hohenberg, P; Kohn, W., Inhomogeneous Electron Gas. Phys. Rev., 1964, 136 (3B), B864-B871.
33.Teter, M. P.; Payne, M. C.; Allan, D. C., Solution of Schrodinger's equation for large systems. Phys. Rev. B, 1989, 40 (18), 12255-12263.
34.Wang, Y.; Perdew, J. P., Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B, 1991, 44 (24), 13298-13307.
35.Bylander, D. M.; Kleinman, L.; Lee. S., Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys. Rev. B, 1990, 42 (2), 1394-1403.
36.Johnson, D. D., Modified Broyden's method for accelerating convergence in self-consistent calculations. Phys. Rev. B, 1988, 38 (18), 12807-12813.
37.Parthé, E.; Cenzual, K.; Gladyshevskii, R. E., Standardization of crystal structure data as an aid to the classification of crystal structure types. J. Alloys Compd., 1993, 197 (2), 291-301.
38.Koch, E.; Fischer, W., Normalizers of space groups: A useful tool in crystal-structure description, comparison and determination. Zeitschrift Fur Kristallographie - Z KRISTALLOGR, 2006, 221, 1-14.
39.Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I; Pérez Vicente, C., Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chem. Mater., 2004, 16 (26), 5721-5725.
40.Ahuja, R.; Auluck, S.; Wills, J. M.; Alouani, M.; Johansson, B.; Eriksson, O., Optical properties of graphite from first-principles calculations. Phys. Rev. B, 1997, 55 (8), 4999-5005. 
41.He, C.; Torija, M. A.; Wu, J.; Lynn, J. W.; Zheng, H.; Mitchell, J. F.; Leighton, C., Non-Griffiths-like clustered phase above the Curie temperature of the doped perovskite cobaltite La1-xSrxCoO3. Phys. Rev. B, 2007, 76 (1), 014401.
42.Guo, G. Y.; Lin, J. C., Systematic ab initio study of the optical properties of BN nanotubes. Phys. Rev. B, 2005, 71 (16), 165402.
43.Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of graphene tubules based on Co. Phys. Rev, B, 1992, 46 (3), 1804-1811.
44.Popov, V. N.; Henrard, L., Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models. Phys. Rev. B, 2004, 70 (11), 115407.
45.Ichida, M.; Mizuno, S.; Tani, Y.; Saito, Y, Nakamura, A., Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. J. Phys. Soc. JPN., 1999, 68 (10), 3131-3133.
46.Bepete,G.; Voiry, D.; Chhowalla, M.; Chiguvare, Z.; Coville, N. J., Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale, 2013, 5, 6552–6557
47.Hellwege, K. H.; Hellwege, A. M., Landolt-Bornstein: Group II: Atomic and Molecular Physics Volume 7: Structure Data of Free Polyatomic Molecules. Springer-Verlag. Berlin. 1976.
48.Manzanares I, C.; Blunt, V. M.; Peng, J., Vibrational ab initio calculations and spectra of C–H bonds of trimethylboron. J. Chem. Phys., 1993, 99, 9412.
49.Jung, S. C.; Kang, Y. J.; Yoo, D. J.; Choi, J. W.; Han, Y. K., Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery. J. Phys. Chem. C, 2016, 120, 13384−13389.
50.Wu, M. S.; Xu, B.; Chen, L. Q.; Ouyang, C. Y., Geometry and Fast Diffusion of AlCl4 Cluster Intercalated in Graphite. Electrochim. Acta, 2016, 195, 158−165.
51.Jung, S. C.; Kang, Y. J.; Han, Y. K., Comments on “Geometry and Fast Diffusion of AlCl4 Cluster Intercalated in Graphite” [Electrochim. Acta 195 (2016) 158−165]. Electrochim. Acta, 2017, 223, 135−136.
52.Wu, M. S.; Xu, B.; Ouyang, C. Y., Further Discussions on the Geometry and Fast Diffusion of AlCl4 Cluster Intercalated in Graphite. Electrochim. Acta, 2017, 223, 137−139.
53.Gao, Y.; Zhu, C.; Chen, Z. Z.; Lu, G., Understanding Ultrafast Rechargeable Aluminum-Ion Battery from First-Principles. J. Phys. Chem. C, 2017, 121, 7131-7138.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top