|
1.Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chem. Mater., 2010, 22 (3), 587. 2.Goodenough, J. B.; Park, K. S., The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc., 2013, 135 (4), 1167. 3.Tarascon, J. M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 2001, 414, 359−367. 4.Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 2011, 4, 3243−3262. 5.Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y., A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol., 2015, 10, 980−985. 6.Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S., Research development on sodium-ion batteries. Chem. Rev., 2014, 114, 11636−11682. 7.Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T., Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci., 2013, 6, 2067−2081. 8.Nam, K. W.; Kim, S.; Yang, E.; Jung, Y.; Levi, E.; Aurbach, D.; Choi, J. W., Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries. Chem. Mater., 2015, 27, 3721−3725. 9.Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D., Mg Rechargeable Batteries: An On-Going Challenge. Energy Environ. Sci., 2013, 6, 2265−2279. 10.Tepavcevic, S.; Liu, Y.; Zhou, D.; Lai, B.; Maser, J.; Zuo, X.; Chan, H.; Král, P.; Johnson, C. S.; Stamenkovic, V.; Markovic, N. M.; Rajh, T., Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. ACS Nano, 2015, 9, 8194−8205. 11.Geng, L.; Lv, G.; Xing, X.; Guo, J., Reversible Electrochemical Intercalation of Aluminum in Mo6S8. Chem. Mater., 2015, 27, 4926−4929. 12.Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R.; Knipping, E.; Peters, W.; Drillet, J. F.; Passerini, S.; Hahn, R., An Overview and Future Perspectives of Aluminum Batteries. Adv. Mater., 2016, 28, 7564−7579. 13.Yang, S.; Knickle, H., Design and Analysis of Aluminum−Air Battery System for Electric Vehicles. J. Power Sources, 2002, 112, 162−173. 14.Li, Q.; Bjerrum, N. J., Aluminum as Anode for Energy Storage and Conversion: A Review. J. Power Sources, 2002, 110, 1−10. 15.Gifford, P. R.; Palmisano, J. B., An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte. J. Electrochem. Soc., 1988, 135, 650–654. 16.Jayaprakash, N.; Das, S. K.; Archer, L. A., The rechargeable aluminum-ion battery. Chem. Commun., 2011, 47, 12610–12612. 17.Rani, J. V.; Kanakaiah, V.; Dadmal, T.; Rao, M. S.; Bhavanarushi, S., Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum-Ion Battery. J. Electrochem. Soc., 2013, 160 (10), A1781–A1784. 18.Hudak, N. S., Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C, 2014, 118, 5203–5215. 19.Lin, M. C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D. Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B. J.; Dai, H.; et al., An Ultrafast Rechargeable Aluminium-Ion Battery. Nature, 2015, 520, 325−328. 20.Chen, H.; Xu, H.; Zheng, B.; Wang, S.; Huang, T.; Guo, F.; Gao, W.; Gao, C., Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. ACS Appl. Mater. Interfaces, 2017, 9, 22628. 21.Angell, M.; Pan, C. J.; Rong, Y.; Yuan, C.; Lin, M. C.; Hwang, B. J.; Dai, H., High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte Proc. Natl. Acad. Sci. USA, 2017, 114, 834. 22.Bhauriyal, P.; Mahata, A.; Pathak, B., The Staging Mechanism of AlCl4 Intercalation in Graphite Electrode for Aluminium-ion Battery. Phys. Chem. Chem. Phys., 2017, 19, 7980−7989. 23.Wang, D. Y.; Wei, C. Y.; Lin, M. C.; Pan, C. J.; Chou, H. L.; Chen, H. A.; Gong, M.; Wu, Y.; Yuan, C.; Angell, M.; Hsieh, Y. J.; et al., Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat. Commun., 2017, 8, 14283. 24.Agiorgousis, M. L.; Sun, Y. Y.; Zhang, S., The Role of Ionic Liquid Electrolyte in an Aluminum-Graphite Electrochemical Cell. ACS Energy Lett., 2017, 2 (3), 689–693. 25.洪瑄佑. Theoretical Calculation of Aluminum-Ion Battery In N-doped Graphene. 國立中正大學, 嘉義縣, 2020. 26.Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59 (3), 1758-1775. 27.Blochl, P. E., Projector augmented-wave method. Phys. Rev. B, 1994, 50, 17953. 28.Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49 (20), 14251-14269. 29.Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16), 11169-11186. 30.Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6 (1), 15-50. 31.Perdew, J. P; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77 (18), 3865-3868. 32.Hohenberg, P; Kohn, W., Inhomogeneous Electron Gas. Phys. Rev., 1964, 136 (3B), B864-B871. 33.Teter, M. P.; Payne, M. C.; Allan, D. C., Solution of Schrodinger's equation for large systems. Phys. Rev. B, 1989, 40 (18), 12255-12263. 34.Wang, Y.; Perdew, J. P., Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B, 1991, 44 (24), 13298-13307. 35.Bylander, D. M.; Kleinman, L.; Lee. S., Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys. Rev. B, 1990, 42 (2), 1394-1403. 36.Johnson, D. D., Modified Broyden's method for accelerating convergence in self-consistent calculations. Phys. Rev. B, 1988, 38 (18), 12807-12813. 37.Parthé, E.; Cenzual, K.; Gladyshevskii, R. E., Standardization of crystal structure data as an aid to the classification of crystal structure types. J. Alloys Compd., 1993, 197 (2), 291-301. 38.Koch, E.; Fischer, W., Normalizers of space groups: A useful tool in crystal-structure description, comparison and determination. Zeitschrift Fur Kristallographie - Z KRISTALLOGR, 2006, 221, 1-14. 39.Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I; Pérez Vicente, C., Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chem. Mater., 2004, 16 (26), 5721-5725. 40.Ahuja, R.; Auluck, S.; Wills, J. M.; Alouani, M.; Johansson, B.; Eriksson, O., Optical properties of graphite from first-principles calculations. Phys. Rev. B, 1997, 55 (8), 4999-5005. 41.He, C.; Torija, M. A.; Wu, J.; Lynn, J. W.; Zheng, H.; Mitchell, J. F.; Leighton, C., Non-Griffiths-like clustered phase above the Curie temperature of the doped perovskite cobaltite La1-xSrxCoO3. Phys. Rev. B, 2007, 76 (1), 014401. 42.Guo, G. Y.; Lin, J. C., Systematic ab initio study of the optical properties of BN nanotubes. Phys. Rev. B, 2005, 71 (16), 165402. 43.Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of graphene tubules based on Co. Phys. Rev, B, 1992, 46 (3), 1804-1811. 44.Popov, V. N.; Henrard, L., Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models. Phys. Rev. B, 2004, 70 (11), 115407. 45.Ichida, M.; Mizuno, S.; Tani, Y.; Saito, Y, Nakamura, A., Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. J. Phys. Soc. JPN., 1999, 68 (10), 3131-3133. 46.Bepete,G.; Voiry, D.; Chhowalla, M.; Chiguvare, Z.; Coville, N. J., Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale, 2013, 5, 6552–6557 47.Hellwege, K. H.; Hellwege, A. M., Landolt-Bornstein: Group II: Atomic and Molecular Physics Volume 7: Structure Data of Free Polyatomic Molecules. Springer-Verlag. Berlin. 1976. 48.Manzanares I, C.; Blunt, V. M.; Peng, J., Vibrational ab initio calculations and spectra of C–H bonds of trimethylboron. J. Chem. Phys., 1993, 99, 9412. 49.Jung, S. C.; Kang, Y. J.; Yoo, D. J.; Choi, J. W.; Han, Y. K., Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery. J. Phys. Chem. C, 2016, 120, 13384−13389. 50.Wu, M. S.; Xu, B.; Chen, L. Q.; Ouyang, C. Y., Geometry and Fast Diffusion of AlCl4 Cluster Intercalated in Graphite. Electrochim. Acta, 2016, 195, 158−165. 51.Jung, S. C.; Kang, Y. J.; Han, Y. K., Comments on “Geometry and Fast Diffusion of AlCl4 Cluster Intercalated in Graphite” [Electrochim. Acta 195 (2016) 158−165]. Electrochim. Acta, 2017, 223, 135−136. 52.Wu, M. S.; Xu, B.; Ouyang, C. Y., Further Discussions on the Geometry and Fast Diffusion of AlCl4 Cluster Intercalated in Graphite. Electrochim. Acta, 2017, 223, 137−139. 53.Gao, Y.; Zhu, C.; Chen, Z. Z.; Lu, G., Understanding Ultrafast Rechargeable Aluminum-Ion Battery from First-Principles. J. Phys. Chem. C, 2017, 121, 7131-7138.
|