|
Ackerman, T. A. (1992). A didactic explanation of item bias, item impact, and item validity from a multidimensional perspective. Journal of Educational Measurement, 29(1), 67–91. https://doi.org/10.1111/j.1745-3984.1992.tb00368.x Allison, P. D. (2000). Multiple imputation for missing data: A cautionary tale. Sociological Methods & Research, 28(3), 301–309. https://doi.org/10.1177/0049124100028003003 Allison, P. D. (2002). Quantitative applications in the social sciences: Missing data. Thousand Oaks, CA: SAGE Publications. Awuor, R. (2008). Effect of unequal sample sizes on the power of DIF detection: An IRT-based monte carlo study with SIBTEST and Mantel-Haenszel procedures (Unpublished doctoral dissertation). Virginia Polytechnic Institute and State University, U.S.A. Banks, K. (2015). An introduction to missing data in the context of differential item functioning. Practical Assessment, Research & Evaluation. 20(12), 1-10. https://doi.org/10.7275/fpg0-5079 Batista, G. E., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17, 519-533. https://doi.org/10.1080/713827181 Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F.M. & Novick, M.R., Statistical theories of mental test scores (pp. 397–479). Reading, Mass.: Addison-Wesley. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey, CA: Wadsworth and Brooks. Burgette, L. F., & Reiter, J. P. (2010). Multiple imputation for missing data via sequential regression trees. American Journal of Epidemiology, 172(9), 1070–1076. https://doi.org/10.1093/aje/kwq260 Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38. Finch, H. (2011). The use of multiple imputation for missing data in uniform DIF analysis: Power and type I error rates. Applied Measurement in Education, 24(4), 281-301. https://doi.org/10.1080/08957347.2011.607054 Fix, E., & Hodges, J. L. (1951). Discriminatory analysis: nonparametric discrimination, consistency properties. Randolph Field, Tx.: USAF School of Aviation Medicine. Gower, J. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27(4), 857-871. https://doi.org/10.2307/2528823 Hambleton, R. K., & Rogers, H. J. (1989). Detecting potentially biased test items: Comparison of IRT area and Mantel-Haenszel methods. Applied Measurement in Education, 2(4), 313-334. https://doi.org/10.1207/s15324818ame0204_4 Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer & H. I. Braun (Eds.), Test validity (pp. 129–145). Hillsdale, NJ: Lawrence Erlbaum Associates. Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale, NJ: Lawrence Erlbaum Associates. Jönsson, P., & Wohlin, C. (2006). Benchmarking K-nearest neighbour imputation with homogeneous Likert data. Empirical Software Engineering, 11(3), 463-489. https://doi.org/10.1007/s10664-006-9001-9 Kleinke, K. (2017). Multiple imputation under violated distributional assumptions: A systematic evaluation of the assumed robustness of predictive mean matching. Journal of Educational and Behavioral Statistics, 42(4), 371–404. https://doi.org/10.3102/1076998616687084 Little, R. J. A. (1988). A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association, 83(404), 1198-1202. https://doi.org/10.2307/2290157 Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken, NJ: John Wiley & Sons. Lord, F.M. (1980). Application of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates. Magis, D., & De Boeck, P. (2014). Type I error inflation in DIF identification with Mantel-Haenszel: An explanation and a solution. Educational and Psychological Measurement, 74(4), 713-728. https://doi.org/10.1177/0013164413516855 Marshall, A., Altman, D.G. & Holder, R.L. (2010). Comparison of imputation methods for handling missing covariate data when fitting a cox proportional hazards model: A resampling study. BMC Medical Research Methodology, 10, 112. https://doi.org/10.1186/1471-2288-10-112 Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719-748. https://doi.org/10.1093/jnci/22.4.719 Mellenbergh, G. J. (1982). Contingency table models for assessing item bias. Journal of Educational Statistics, 7(2), 105–118. https://doi.org/10.3102/10769986007002105 Morris, T. P., White, I. R., & Royston, P. (2014). Tuning multiple imputation by predictive mean matching and local residual draws. BMC Medical Research Methodology, 14(1), 75. https://doi.org/10.1186/1471-2288-14-75 Narayanan, P., & Swaminathan, H. (1994). Performance of the Mantel-Haenszel and simultaneous item bias procedures for detecting differential item functioning. Applied Psychological Measurement, 18(4), 315–328. https://doi.org/10.1177/014662169401800403 Peng, C. Y., Harwell, M. R., Liou, S. M., & Ehman, L. H. (2006). Advances in missing data methods and implications for educational research. In S. S. Sawilowsky (Ed.), Real Data Analysis (pp. 31-78). Charlotte, NC: New Information Age. Peng C.-Y. J., & Zhu J. (2008). Comparison of two approaches for handling missing covariates in logistic regression. Educational and Psychological Measurement, 68(1), 58-77. https://doi.org/10.1177/0013164407305582 Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74(4), 525–556. https://doi.org/10.3102/00346543074004525 Rasch, G. (1960). Studies in mathematical psychology: I. Probabilistic models for some intelligence and attainment tests. Oxford, EN: Nielsen & Lydiche. Robitzsch, A., & Rupp, A. A. (2009). Impact of missing data on the detection of differential item functioning: The case of Mantel-Haenszel and logistic regression analysis. Educational and Psychological Measurement, 69(1), 18-34. https://doi.org/10.1177/0013164408318756 Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592. https://doi.org/10.1093/biomet/63.3.581 Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: John Wiley & Sons. Schafer, J. L. (1997). Analysis of incomplete multivariate data. London, UK: Chapman & Hall. Schafer, J. L. (1999). Multiple imputation: A primer. Statistical Methods in Medical Research, 8(1), 3-15. https://doi.org/10.1177/096228029900800102 Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177. https://doi.org/10.1037/1082-989X.7.2.147 Shealy, R., & Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF. Psychometrika, 58(2), 159–194. https://doi.org/10.1007/BF02294572 Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27(4), 361-370. https://doi.org/10.1111/j.1745-3984.1990.tb00754.x Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning using the parameters of item response models. In P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 67–113). Hillsdale, NJ: Lawrence Erlbaum Associates. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., …Altman, R. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520–525. https://doi.org/10.1093/bioinformatics/17.6.520 Wang, W., & Su, Y. (2004). Effects of average signed area between two item characteristic curves and test purification procedures on the DIF detection via the Mantel-Haenszel method. Applied Measurement in Education, 17(2), 113 - 144.
|