跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李彧堯
研究生(外文):LEE, YU YAO
論文名稱(外文):Experimental study of high aspect ratio micro-channel induced collective behavior of Janus particle suspension
指導教授:姚松偉
指導教授(外文):IO, CHONG-WAI
口試委員:曲宏宇任春平姚松偉
口試委員(外文):CHU, HONG-YUJEN, CHUN-PINGIO, CHONG-WAI
口試日期:2021-01-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:55
中文關鍵詞:主動微粒微流道介觀行為
外文關鍵詞:active particlemicro-channelmesoscopic motion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Janus particle has the capability for converting environmental energy into mechanical energy for self-propelling motion, which maintains the system in non-equilibrium state with complicated behavior. Some previous studies show that the suspension of Janus particle, even in the homogeneous background, under the inter-play of self-propulsion and inter-particle interaction, already exhibits complicated heterogeneous motion such as the spontaneous phase separation. By further including the effect of boundary confinement, such system should reveal further complicated motion.
In this work, by confining the laser-activated thermophoretic type Janus particle suspension into high aspect ratio Polydimethylsiloxane micro-channel, we experimentally investigate their steady-state clustering configurations. The micro-channel is fabricated though the technique of soft-lithography. The high aspect ratio guarantees the translational symmetry along the longitudinal direction, such that the spatial confinement is quasi-1D along the transverse direction. By controlling the relative strength between the self-propulsion and the spatial confinement, including both the channel wall confinement and optical trapping confinement, the steady-state configuration is transited from homogeneous Brownian motion to sausage-like bundle at the channel center, quasi-periodic isolated cluster at the channel center, a-periodic isolated cluster and finally the boundary accumulation as increasing the particle propulsion strength. Through the transverse probability distribution and the particle displacement field, the formation mechanisms of the sausage-like bundle and isolated cluster are also investigated. It is found that the primary factor to determine the configuration is the relative strength between the self-propulsion strength, mesoscopic scaled cooperative thermophoretic force and the optical trapping forces. This idea is also tested for different channel widths, it shows that broadening the channel width can shift the transition to stronger propulsion strength, and vice versa.
Abstract ................................................ 1
Chapter 1 Introduction ...................................3
Chapter 2 Background .....................................6
2-1 An introduction to artificial Janus particles ........6
2-1-1 Janus particle .....................................6
2-1-2 Thermophoretic type Janus particle .................8
2-2 The self-propulsion dynamics in homogeneous background 11
2-2-1 Self-propulsion induced dynamics at single particle level 11
2-2-2 Self-propulsion induced dynamics at mesoscopic particle level: Motility-Induced Phase Separation ........................13
2-2-3 Mesoscopic turbulence ..............................14
2-3 Behavior of AP under spatial confinement .............16
2-3-1 Optical trapping effect as a spatial confinement ...16
2-3-2 Behavior of Hexbug under harmonic trap .............18
2-3-3 Numerical studies of collective behavior of AP confined in micro-channel ..................................................20
Chapter 3 Experimental set up ............................22
3-1 Fabrication of micro channel .........................22
3-1-1 Photolithography ...................................23
3-1-2 Soft-lithography ...................................24
3-1-3 Plasma treatment ...................................25
3-2 Preparation Janus particle ...........................28
-ii-
3-3 Optical excitation system ........................... 29
3-4 Image acquisition system and analysis method ........ 31
Chapter 4 Results and Discussion ........................ 32
4-1 The effect of channel confinement ................... 33
4-2 Propulsion dominated motion (Self-propulsion induced boundary accumulation) ........................................... 35
4-3 Sub-propulsion regime: isolated cluster ............. 39
4-4 Sub-propulsion motion: sausage like bundle ...........41
4-5 Transition process of cluster patterns .............. 42
4-6 The effect of channel width ......................... 46
Chapter 5 Conclusion .................................... 48
Bibliography ............................................ 50
1. Henricus H. Wensink, et al. Meso-scale turbulence in living fluids. PNAS September 4, 2012 109 (36) 14308-14313.
2. Raymond A.Swanson, et al. Encyclopedia of the Neurological Sciences, 2003
3. Yuting Lou, et al. Linking biological and physical aging: Dynamical scaling of multicellular regeneration. PRE 96, 062418 (2017)
4. Andrey Sokolov, et al. Concentration Dependence of the Collective Dynamics of Swimming Bacteria. PRL 98, 158102 (2007).
5. Xiao-Lun Wu, et al. Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath. PRL 84, 3017(2000)
6. Walter F. Paxton, Catalytic Nanomotors: Autonomous Movement of Striped Nanorods, J. Am. Chem. Soc. 2004, 126, 41, 13424–13431
7. Sumit Gangwal, et al. Induced-Charge Electrophoresis of Metallodielectric Particles. PRL 100, 058302 (2008). 8. TANNER, C. The Soret Effect. Nature 170, 34–35 (1952).
9. Anthony J. Ryan, Self-Motile Colloidal Particles: From Directed Propulsion to RandomWalk, PRL 99, 048102 (2007)
10. Chong-Wai Io, et al. Experimental investigation of mesoscopic heterogeneous motion of laser-activated self-propelling Janus particles in suspension. PRE 96, 062601 (2017).
11. GiuseppeGonnellaa. Motility-induced phase separation and coarsening in active matter. C. R.Physique 16 (2015) 316–331.
12. Ivo Buttinoni, et al. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles. PRL 110, 238301 (2013)
13. Olivier Dauchot, et al. Dynamics of a Self-Propelled Particle in a Harmonic Trap. PRL 122.068002
14. Sin-Cen Cai, et al. The mesoscopic collective motion of self-propelling active particle suspension confined in two-dimensional micro-channel. 2020 J. Phys.: Condens. Matter 32 095101
15. Yashodhan Hatwalne, et al. Rheology of Active-Particle Suspensions. PRL 92.118101
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top