|
[1]T. Bailey, H. J. I. r. Durrant-Whyte, and a. magazine, “Simultaneous localization and mapping (SLAM): Part II,” vol. 13, no. 3, pp. 108-117, 2006. [2]Y. Abdelrasoul, A. B. S. H. Saman, and P. Sebastian, "A quantitative study of tuning ROS gmapping parameters and their effect on performing indoor 2D SLAM." pp. 1-6. [3]S.-H. Chan, P.-T. Wu, and L.-C. Fu, "Robust 2D indoor localization through laser SLAM and visual SLAM fusion." pp. 1263-1268. [4]K.-S. Choi, S.-G. J. I. J. o. P. E. Lee, and Manufacturing, “Enhanced SLAM for a mobile robot using extended Kalman Filter and neural networks,” vol. 11, no. 2, pp. 255-264, 2010. [5]J. Engel, T. Schöps, and D. Cremers, "LSD-SLAM: Large-scale direct monocular SLAM." pp. 834-849. [6]W. Hess, D. Kohler, H. Rapp, and D. Andor, "Real-time loop closure in 2D LIDAR SLAM." pp. 1271-1278. [7]G. Hu, S. Huang, L. Zhao, A. Alempijevic, and G. Dissanayake, "A robust rgb-d slam algorithm." pp. 1714-1719. [8]C. Kerl, J. Sturm, and D. Cremers, "Dense visual SLAM for RGB-D cameras." pp. 2100-2106. [9]R. Li, J. Liu, L. Zhang, and Y. Hang, "LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments." pp. 1-15. [10]R. Mur-Artal, and J. D. Tardós, "Fast relocalisation and loop closing in keyframe-based SLAM." pp. 846-853. [11]R. Mur-Artal, and J. D. J. I. T. o. R. Tardós, “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” vol. 33, no. 5, pp. 1255-1262, 2017. [12]P. Newman, D. Cole, and K. Ho, "Outdoor SLAM using visual appearance and laser ranging." pp. 1180-1187. [13]T. Taketomi, H. Uchiyama, S. J. I. T. o. C. V. Ikeda, and Applications, “Visual SLAM algorithms: a survey from 2010 to 2016,” vol. 9, no. 1, pp. 16, 2017. [14]G. Klein, and D. Murray, "Parallel tracking and mapping for small AR workspaces." pp. 225-234. [15]G. P. Huang, A. I. Mourikis, and S. I. J. I. T. o. R. Roumeliotis, “A quadratic-complexity observability-constrained unscented Kalman filter for SLAM,” vol. 29, no. 5, pp. 1226-1243, 2013. [16]A. B. S. H. Saman, and A. H. Lotfy, "An implementation of SLAM with extended Kalman filter." pp. 1-4. [17]F. Yu, Q. Sun, C. Lv, Y. Ben, and Y. J. M. P. i. E. Fu, “A SLAM algorithm based on adaptive cubature Kalman filter,” vol. 2014, 2014. [18]J. Zhu, N. Zheng, Z. Yuan, Q. Zhang, X. Zhang, and Y. He, "A slam algorithm based on the central difference kalman filter." pp. 123-128. [19]M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, "Robust tracking-by-detection using a detector confidence particle filter." pp. 1515-1522. [20]H. T. Niknejad, A. Takeuchi, S. Mita, and D. J. I. T. o. I. T. S. McAllester, “On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation,” vol. 13, no. 2, pp. 748-758, 2012. [21]T. Zhang, C. Xu, and M.-H. Yang, "Multi-task correlation particle filter for robust object tracking." pp. 4335-4343. [22]H. Strasdat, J. M. Montiel, A. J. J. I. Davison, and V. Computing, “Visual SLAM: why filter?,” vol. 30, no. 2, pp. 65-77, 2012. [23]Y. Ke, and R. Sukthankar, "PCA-SIFT: A more distinctive representation for local image descriptors." pp. II-II. [24]H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features." pp. 404-417. [25]M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "Brief: Binary robust independent elementary features." pp. 778-792. [26]E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative to SIFT or SURF." pp. 2564-2571. [27]P. J. J. J. o. t. A. s. a. Rousseeuw, “Least median of squares regression,” vol. 79, no. 388, pp. 871-880, 1984. [28]O. Chum, J. Matas, and J. Kittler, "Locally optimized RANSAC." pp. 236-243. [29]B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, "Bundle adjustment—a modern synthesis." pp. 298-372. [30]P. Dollár, R. Appel, S. Belongie, P. J. I. t. o. p. a. Perona, and m. intelligence, “Fast feature pyramids for object detection,” vol. 36, no. 8, pp. 1532-1545, 2014. [31]E. Karami, S. Prasad, and M. J. a. p. a. Shehata, “Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images,” 2017. [32]Y. Zhang, R. Jin, Z.-H. J. I. J. o. M. L. Zhou, and Cybernetics, “Understanding bag-of-words model: a statistical framework,” vol. 1, no. 1-4, pp. 43-52, 2010. [33]R. Huang, J. Pedoeem, and C. Chen, "YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers." pp. 2503-2510. [34]G. Bradski, and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library: " O'Reilly Media, Inc.", 2008. [35]T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft coco: Common objects in context." pp. 740-755. [36]K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn." pp. 2961-2969. [37]Q.-Y. Zhou, J. Park, and V. J. a. p. a. Koltun, “Open3D: A modern library for 3D data processing,” 2018. [38]P. J. Besl, and N. D. McKay, "Method for registration of 3-D shapes." pp. 586-606. [39]P. Soille, Morphological image analysis: principles and applications: Springer Science & Business Media, 2013. [40]Z. J. I. T. o. p. a. Zhang, and m. intelligence, “A flexible new technique for camera calibration,” vol. 22, no. 11, pp. 1330-1334, 2000. [41]S. Thrun, W. Burgard, and D. Fox, "A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping." pp. 321-328. [42]H. Andreasson, T. Duckett, and A. Lilienthal, "Mini-SLAM: Minimalistic visual SLAM in large-scale environments based on a new interpretation of image similarity." pp. 4096-4101. [43]S. García, M. E. López, R. Barea, L. M. Bergasa, A. Gómez, and E. J. Molinos, "Indoor SLAM for micro aerial vehicles control using monocular camera and sensor fusion." pp. 205-210. [44]D. M. Cole, and P. M. Newman, "Using laser range data for 3D SLAM in outdoor environments." pp. 1556-1563. [45]Smistad Erik, Falch Thomas L, Bozorgi Mohammadmehdi, Elster Anne C and Lindseth Frank, "Medical image segmentation on GPUs–A comprehensive review", 2015. [46]https://www.wikipedia.org/
|