|
[1] Insperger, T., Stépán, G., Bayly, P. V., & Mann, B. P. (2003). Multiple chatter frequencies in milling processes. Journal of sound and vibration, 262(2), 333-345. [2] Shrivastava, Y., & Singh, B. (2019). A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning. European Journal of Mechanics-A/Solids, 73, 381-393. [3] Schmitz, T. (2015). The microphone feedback analogy for chatter in machining. Shock and Vibration, 2015. [4] Tukora, B., & Szalay, T. (2012). Multi-dexel based material removal simulation and cutting force prediction with the use of general-purpose graphics processing units. Advances in Engineering Software, 43(1), 65-70. [5] Ozden, S. (2017). Prediction and Experimental Study on Cutting Force of Austempered Vermicular Graphite Cast Iron Using Artificial Neural Network. Mechanics, 23(1), 153-159. [6] Nikhare, C. P., Conklin, C., & Loker, D. R. (2017). Understanding Acoustic Emission for Different Metal Cutting Machinery and Operations. Journal of manufacturing and Materials Processing, 1(1), 7. [7] Lamraoui, M., Thomas, M., El Badaoui, M., & Girardin, F. (2012, October). Cyclostationarity analysis of instantaneous angular speeds for monitoring chatter in high speed milling. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society (pp. 3868-3873). IEEE. [8] Al-Regib, E., Ni, J., & Lee, S. H. (2003). Programming spindle speed variation for machine tool chatter suppression. International Journal of Machine Tools and Manufacture, 43(12), 1229-1240. [9] Quintana, G., Ciurana, J., Ferrer, I., & Rodriguez, C. A. (2009). Sound mapping for identification of stability lobe diagrams in milling processes. International journal of machine tools and manufacture, 49(3-4), 203-211. [10] Shrivastava, Y., Singh, B., & Sharma, A. (2018). Identification of Chatter in Turning Operation using WD and EMD. Materials Today: Proceedings, 5(11), 23917-23926. [11] Zhu, L., & Liu, C. (2020). Recent progress of chatter prediction, detection and suppression in milling. Mechanical Systems and Signal Processing, 143, 106840. [12] Shao, Q., Feng, C. J., & Li, W. (2011, August). Hybrid PCA-SVM method for pattern recognition of chatter gestation. In 2011 Second International Conference on Digital Manufacturing & Automation (pp. 598-601). IEEE. [13] Pongsathornwiwat, N., & Tangjitsitcharoen, S. (2010, July). Intelligent monitoring and detection of chatter in ball-end milling process on CNC machining center. In The 40th International Conference on Computers & Indutrial Engineering (pp. 1-6). IEEE. [14] Alexandre, F. A., Lopes, W. N., Ferreira, F. I., Dotto, F. R., Aguiar, P. R. D., & Bianchi, E. C. (2017). Chatter vibration monitoring in the surface grinding process through digital signal processing of acceleration signal. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 3, p. 126). [15] Alagarsamy, S. V., Ravichandran, M., Meignanamoorthy, M., Sakthivelu, S., & Dineshkumar, S. (2020). Prediction of surface roughness and tool wear in milling process on brass (C26130) alloy by Taguchi technique. Materials Today: Proceedings, 21, 189-193. [16] Wojciechowski, S., Wiackiewicz, M., & Krolczyk, G. M. (2018). Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Measurement, 129, 686-694. [17] Kumar, S., Saravanan, I., & Patnaik, L. (2020). Optimization of surface roughness and material removal rate in milling of AISI 1005 carbon steel using Taguchi approach. Materials Today: Proceedings, 22, 654-658. [18] Faassen, R. (2007). Chatter prediction and control for high-speed milling. Eindhoven: Eindhoven University of Technology, 362. [19] Quintana, G., & Ciurana, J. (2011). Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture, 51(5), 363-376. [20] 陳傑. (2014). 工具機預估工件銑削品質可行性之研究. 中正大學機械工程學系學位論文, 1-70. [21] 廖學佑. (2015). 智慧化加工表面粗糙度預測模型及材料移除率最佳化研究-以塑膠射出成型模銑削為例. 中興大學機械工程學系所學位論文, (2015 年), 1-82.
[22] 蔡秉均. (2010). 切削顫振偵測系統之研發 (Doctoral dissertation, 蔡秉均). [23] 陳久弘. (2012). 運用灰關聯因子分析與類神經網路於銑削表面粗糙度即時預測系統. 中原大學工業工程研究所學位論文, 1-75. [24] 張竹賢. (2010). 應用迴歸類神經預測銑削加工之表面粗糙度. [25] 洪沛志. (2018). 銑削加工振動訊號與表面粗糙度之關聯性. 臺灣大學機械工程學研究所學位論文, (2018 年), 1-175.
|