跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡松延
研究生(外文):Tsai,SUNG-YAN
論文名稱:分析銑削過程機台噪音及振動與工件表面粗糙度關聯性
指導教授:馮國華馮國華引用關係高永洲高永洲引用關係
指導教授(外文):FENG,GUO-HUAKAO,YUNG-CHOU
口試委員:鄭榮偉王永成
口試委員(外文):ZHENG,RONG-WEIWANG,YONG-CHENG
口試日期:2020-01-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:110
中文關鍵詞:表面粗糙度多元線性回歸分析正相關均方根誤差
外文關鍵詞:Regression analysisPositive correlation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在工具機的銑軸上同時安裝加速規與麥克風感測器,用來量測銑削過程中的振動訊號。以切削過程中產生振動及聲音訊號來尋找表面粗糙度值(Ra)與頻率之間的關聯性來達成即時量測表面粗糙度值。
將加工產生的振動與聲音訊號進行訊號分析處理,以轉速頻為一單位並固定頻寬來進行訊號等分切割,找出與表面粗糙度值具有關聯性的頻段,將這些頻段上的能量值進行運算。利用統計學相關係數的公式來觀察運算後的能量值與表面粗糙度值之間是否有相同的趨勢,在利用多元線性回歸的方式來找到兩者之間的相關係數,來達到切削過程中可即時從訊號的頻段上得到相近的表面粗糙度值,後續可利用演算法、機器學習、K-折交叉驗證等方式,配合均方根誤差(NRMSD)來計算預測表面粗糙度值與實際值誤差率。

In this study, while the milling tool axis accelerometer and a microphone mounted sensors for measuring the amount of motion signal of the milling process. The vibration and sound signals generated during the cutting process are used to find the correlation between the surface roughness value (Ra) and the frequency to achieve real-time measurement of the surface roughness value.
The vibration and sound signals generated by the processing are processed by signal analysis, and the signal is divided into equal parts with the speed frequency as a unit and the fixed bandwidth is used to find the frequency bands that are related to the surface roughness value, and the energy value on these frequency bands operated. Use the formula of statistical correlation coefficient to observe whether there is the same trend between the calculated energy value and the surface roughness value. Use multiple linear regression to find the correlation coefficient between the two to achieve the cutting process. The similar surface roughness value can be obtained from the frequency band of the signal in real time, and then algorithms, machine learning, K-fold cross-validation, etc. can be used to calculate the error between the predicted surface roughness value and the actual value with the root mean square error (NRMSD) rate.

第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3本文架構 3
第二章 文獻探討 4
2.1切削顫振理論 5
2.2表面粗糙度理論 8
2.3銑削理論 9
2.3.1主軸轉速、端銑刀直徑、切削速度 11
2.3.2 進給速度 11
2.3.3切削深度 11
2.4感測器元件與模組介紹 12
2.4.1鋁環設計 12
2.4.2加速規感測器設計 12
2.4.3麥克風感測器設計 14
2.4.4訊號分析軟體與擷取設備 14
第三章 研究方法 18
3-1研究對象 19
3-2研究假說 20
3-3刀具規格 22
3-4表面粗糙度測定儀 22
3-5實驗加工參數 23
第四章 研究結果 26
4.1穩定切削圖 26
4.2 切削力分析 26
4.3訊號分析前置處理 40
4.4訊號上判別穩定與非穩定 48
4.5訊號分析與表面粗糙度量測 53
4.5.1第一類方法(all) 53
4.5.2第二類方法(只有主頻) 58
4.5.3 第三類方法(主頻+非穩) 59
4.5.4表面粗糙度量測 60
4.6訊號與表面粗糙度趨勢分析 60
4.7多元線性回歸 80
第五章 未來規劃 88
第六章 結論與建議 92
參考文獻 93

[1] Insperger, T., Stépán, G., Bayly, P. V., & Mann, B. P. (2003). Multiple chatter frequencies in milling processes. Journal of sound and vibration, 262(2), 333-345.
[2] Shrivastava, Y., & Singh, B. (2019). A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning. European Journal of Mechanics-A/Solids, 73, 381-393.
[3] Schmitz, T. (2015). The microphone feedback analogy for chatter in machining. Shock and Vibration, 2015.
[4] Tukora, B., & Szalay, T. (2012). Multi-dexel based material removal simulation and cutting force prediction with the use of general-purpose graphics processing units. Advances in Engineering Software, 43(1), 65-70.
[5] Ozden, S. (2017). Prediction and Experimental Study on Cutting Force of Austempered Vermicular Graphite Cast Iron Using Artificial Neural Network. Mechanics, 23(1), 153-159.
[6] Nikhare, C. P., Conklin, C., & Loker, D. R. (2017). Understanding Acoustic Emission for Different Metal Cutting Machinery and Operations. Journal of manufacturing and Materials Processing, 1(1), 7.
[7] Lamraoui, M., Thomas, M., El Badaoui, M., & Girardin, F. (2012, October). Cyclostationarity analysis of instantaneous angular speeds for monitoring chatter in high speed milling. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society (pp. 3868-3873). IEEE.
[8] Al-Regib, E., Ni, J., & Lee, S. H. (2003). Programming spindle speed variation for machine tool chatter suppression. International Journal of Machine Tools and Manufacture, 43(12), 1229-1240.
[9] Quintana, G., Ciurana, J., Ferrer, I., & Rodriguez, C. A. (2009). Sound mapping for identification of stability lobe diagrams in milling processes. International journal of machine tools and manufacture, 49(3-4), 203-211.
[10] Shrivastava, Y., Singh, B., & Sharma, A. (2018). Identification of Chatter in Turning Operation using WD and EMD. Materials Today: Proceedings, 5(11), 23917-23926.
[11] Zhu, L., & Liu, C. (2020). Recent progress of chatter prediction, detection and suppression in milling. Mechanical Systems and Signal Processing, 143, 106840.
[12] Shao, Q., Feng, C. J., & Li, W. (2011, August). Hybrid PCA-SVM method for pattern recognition of chatter gestation. In 2011 Second International Conference on Digital Manufacturing & Automation (pp. 598-601). IEEE.
[13] Pongsathornwiwat, N., & Tangjitsitcharoen, S. (2010, July). Intelligent monitoring and detection of chatter in ball-end milling process on CNC machining center. In The 40th International Conference on Computers & Indutrial Engineering (pp. 1-6). IEEE.
[14] Alexandre, F. A., Lopes, W. N., Ferreira, F. I., Dotto, F. R., Aguiar, P. R. D., & Bianchi, E. C. (2017). Chatter vibration monitoring in the surface grinding process through digital signal processing of acceleration signal. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 3, p. 126).
[15] Alagarsamy, S. V., Ravichandran, M., Meignanamoorthy, M., Sakthivelu, S., & Dineshkumar, S. (2020). Prediction of surface roughness and tool wear in milling process on brass (C26130) alloy by Taguchi technique. Materials Today: Proceedings, 21, 189-193.
[16] Wojciechowski, S., Wiackiewicz, M., & Krolczyk, G. M. (2018). Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Measurement, 129, 686-694.
[17] Kumar, S., Saravanan, I., & Patnaik, L. (2020). Optimization of surface roughness and material removal rate in milling of AISI 1005 carbon steel using Taguchi approach. Materials Today: Proceedings, 22, 654-658.
[18] Faassen, R. (2007). Chatter prediction and control for high-speed milling. Eindhoven: Eindhoven University of Technology, 362.
[19] Quintana, G., & Ciurana, J. (2011). Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture, 51(5), 363-376.
[20] 陳傑. (2014). 工具機預估工件銑削品質可行性之研究. 中正大學機械工程學系學位論文, 1-70.
[21] 廖學佑. (2015). 智慧化加工表面粗糙度預測模型及材料移除率最佳化研究-以塑膠射出成型模銑削為例. 中興大學機械工程學系所學位論文, (2015 年), 1-82.

[22] 蔡秉均. (2010). 切削顫振偵測系統之研發 (Doctoral dissertation, 蔡秉均).
[23] 陳久弘. (2012). 運用灰關聯因子分析與類神經網路於銑削表面粗糙度即時預測系統. 中原大學工業工程研究所學位論文, 1-75.
[24] 張竹賢. (2010). 應用迴歸類神經預測銑削加工之表面粗糙度.
[25] 洪沛志. (2018). 銑削加工振動訊號與表面粗糙度之關聯性. 臺灣大學機械工程學研究所學位論文, (2018 年), 1-175.

電子全文 電子全文(網際網路公開日期:20260201)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top