跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王溢增
研究生(外文):WANG,YI-ZENG
論文名稱:螺絲鎖附壓電薄板振動之電極分佈設計與動態特性探討
指導教授:吳亦莊
指導教授(外文):WU,YI-CHUANG
口試委員:蔡忠佑楊翰勳盧南佑
口試委員(外文):TSAI,CHUNG-YUYANG,HAN-SYUNLU,NAN-YOU
口試日期:2022-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:109
語文別:中文
論文頁數:130
中文關鍵詞:古典薄板理論漢米爾頓原理漢米爾頓原理壓電陶瓷有限元素法自然頻率電子斑點干涉術疊加法
外文關鍵詞:classical thin-plate theoryHamilton's principlesuperposition methodpiezoelectric ceramicsfinite element methodnatural frequencies, AF-ESPI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要為討論壓電陶瓷平板的振動分析,並著重在分析點支撐情況下的壓電平板振動情形;首先以古典薄板理論為基礎,進一步將理論修正來得出所需的全自由薄板振動理論,之後由全自由振動理論來得出點支撐薄板振動理論,並透過推導壓電材料本身之特性方程式結果,將所得結果套用在薄板理論之中,以此便能取得所需的點支撐壓電平板振動理論,而為了驗證理論的正確性和可行性,藉由使用有限元素軟體來進行模擬分析,確認兩者的差異。並且透過實驗來進一步了解理論的準確性。
在實驗流程上,本文是選擇以螺絲鎖附方式來達成點支撐的固定條件,因此運用雷射切割技術來取得所需的螺絲鎖附壓電平板;而因壓電材料其本身的特性,在過程中除了調整電壓及頻率來激振壓電平板外,亦能藉由不同的電極設計來取得不同的共振模態圖形,並利用全域式電子斑點干涉術來進行即時紀錄,最後再比較實驗結果與理論。除此之外本文亦利用網版印刷之方式來嘗試進一步討論壓電版的振動議題,期許能以不同方式來達成控制模態之目的。

In this paper, piezoelectric ceramic plate vibration is the main direction of discussion and analysis, and the piezoelectric plate vibration under point support will be analyzed. At the beginning, the classical thin-plate theory is modified to derive the theory of fully free thin-plate vibration, and then the theory of point-supported thin-plate vibration is derived.Then, the equations of the properties of piezoelectric materials are applied to the thin-plate theory, and then we can obtain the point-supported piezoelectric plate vibration theory.The difference between the two theories will be analyzed by finite element software, and the accuracy of the theory will be confirmed by experiments.
In the experiment, the point support condition will be achieved by screw clamping, and the screw clamping plate will be obtained by laser cutting technique. Due to the characteristics of the piezoelectric material, in addition to adjusting the voltage and frequency to excite the piezoelectric plate, we can also use different electrode designs to obtain different resonance mode patterns, and use AF-ESPI technique to record them in real time, and then compare the experimental results with the theoretical ones.
In addition, this thesis also tries to further discuss the vibration of piezoelectric plates by means of screen printing, in order to achieve the purpose of controlling the modes in different ways.

摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 內容介紹 3
第二章 量測基本原理與實驗設備 5
2.1 電子斑點干涉術 5
2.2 面外振動量測 6
2.3 雷射切割技術 8
2.4 壓電陶瓷平板電極印刷技術 8
第三章 薄板慣量修正理論與模擬分析 11
3.1 等向性薄板慣量修正理論推導 11
3.2 薄板自由振動理論推導 16
3.3 單點支撐薄板慣量修正理論推導 28
3.4 單點支撐之壓電薄板振動理論與模擬比較 40
第四章 壓電平板面外振動理論 53
4.1 線性壓電平板特性 53
4.2 變分法與壓電理論 55
4.3 壓電平板面外展開 57
4.4 全自由壓電平板振動理論與模擬結果比較及分析 61
4.5 單點支撐壓電平板振動理論與模擬結果比較及分析 62
4.6 多點支撐壓電平板振動理論與模擬結果比較及分析 63
第五章 壓電平板實驗及結果探討 79
5.1 壓電陶瓷平板之電極設計與實驗方法 79
5.2 網版印刷實驗流程 79
5.3 壓電陶瓷平板振動之實驗 80
5.3.1. 自由振動壓電平板結果分析 80
5.3.2. 中心螺絲鎖附壓電平板結果分析 81
5.3.3. 短邊螺絲鎖附壓電平板結果分析 81
5.3.4. 中心鎖附網版印刷壓電平板結果分析 82
第六章 結論與未來展望 125
6.1 本文結論 125
6.2 未來展望 126
參考文獻 127

[1]Yu, Y. Y. (1964). “Generalized Hamilton's principle and variational equation of motion in nonlinear elasticity theory, with application to plate theory.” The Journal of the Acoustical Society of America, 36(1), 111-120.
[2]Allik, H., & Hughes, T. J. (1970). “Finite element method for piezoelectric vibration.” International journal for numerical methods in engineering, 2(2), 151-157.
[3]Leissa, A. W. (1973). “The free vibration of rectangular plates.” Journal of sound and vibration, 31(3), 257-293.
[4]Spilker, R. L., Orringer, O., Witmer, E. A., Verbiese, S., & French, S. E. (1976). “Use of the Hybrid-Stress Finite-Element Model for the Static and Dynamic Analysis of Multilayer Composite Plates and Shells.”
[5]Dickinson, S. M. (1978). “The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using Rayleigh's method.” Journal of Sound and Vibration, 61(1), 1-8.
[6]Gorman, D. J. (1978). “Free vibration analysis of the completely free rectangular plate by the method of superposition.” Journal of Sound and Vibration, 57(3), 437-447.
[7]Roufaeil, O. L., & Dawe, D. J. (1980). “Vibration analysis of rectangular Mindlin plates by the finite strip method.” Computers & Structures, 12(6), 833-842.
[8]Liew, K. M., Lam, K. Y., & Chow, S. T. (1990). “Free vibration analysis of rectangular plates using orthogonal plate function.” Computers & Structures, 34(1), 79-85.
[9]Abe, A., Kobayashi, Y., & Yamada, G. (2000). “Non-linear vibration characteristics of clamped laminated shallow shells.” Journal of Sound and vibration, 234(3), 405-426.
[10]Wu, J. H., Liu, A. Q., & Chen, H. L. (2007). “Exact solutions for free-vibration analysis of rectangular plates using Bessel functions.”
[11]Baferani, A. H., Saidi, A. R., & Jomehzadeh, E. (2011). “An exact solution for free vibration of thin functionally graded rectangular plates.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(3), 526-536.
[12]L. Phamová & T. Vampola, “Vibration modes of a single plate with general boundary conditions,” Applied and Computational Mechanics, vol. 10, no. 1, 2016.
[13]吳亦莊. (2018). “應用 Mindlin 板理論與高階剪切形變理論解析固體耦合的振動特性.”
[14]Butters, J. N., & Leendertz, J. A. (1971). “Speckle pattern and holographic techniques in engineering metrology.” Optics Laser Technology, 3(1), 26-30.
[15]Høgmoen, K., & Løkberg, O. J. (1977). “Detection and measurement of small vibrations using electronic speckle pattern interferometry.” Applied Optics, 16(7), 1869-1875.
[16]Moore, A. J., & Tyrer, J. R. (1996). “Two-dimensional strain measurement with ESPI.” Optics and lasers in engineering, 24(5-6), 381-402.
[17]Wang, W. C., Hwang, C. H., & Lin, S. Y. (1996). “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods.” Applied optics, 35(22), 4502-4509.
[18]Wang, W. C., & Hwang, C. H. (1997). “Vibration Measurement by Amplitude-Fluctuation ESPI Method.” 中華民國振動與噪音工程學會論文集, 227-236.
[19]Huang, C. H., & Ma, C. C. (2001). “Experimental measurement of mode shapes and frequencies for vibration of plates by optical interferometry method.” J. Vib. Acoust., 123(2), 276-280.
[20]Ma, C. C., & Huang, C. H. (2001). “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies.” Experimental Mechanics, 41(1), 8-18.
[21]李舒昇, 王瀚威, 曾緯哲, 許義鴻, & 李世光. (2007). “時進正交相移法與五-相移法於電子斑點干涉術之設計與研究.” 科儀新知, (161), 43-55.
[22]Kwak, M. K., & Han, S. (2007). “Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method.” Journal of Sound and Vibration, 306(1-2), 12-30.
[23]吳亦莊. (2009). “理論解析與實驗量測壓電平板的面外振動及特性探討.”
[24]林世皓. (2012). “無鉛壓電陶瓷與壓電複材平板動態特性及應用電極設計於鋁板激振之實驗量測與分析.”
[25]Demir, C., & Alapan, Y. (2012). “Modeling and dynamic response analysis of an point supported plate by using ANSYS and MATLAB.” In Advanced Materials Research (Vol. 445, pp. 1088-1093). Trans Tech Publications Ltd.
[26]戴國軒. (2021). “螺絲鎖附薄板之振動行為探討與結構致動最佳化設計.”

電子全文 電子全文(網際網路公開日期:20240823)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊