跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊賓
研究生(外文):Chen, JyunBin
論文名稱:廣義空間調變訊號下固定複雜度樹狀搜尋檢測器之進一步硬體架構實現
論文名稱(外文):LARGE Extended Research on Hardware Architecture Realization for Fixed-Complexity Tree Search Detector of Generalized Spatially Modulated Signals
指導教授:劉宗憲劉宗憲引用關係
指導教授(外文):Liu, Tsung-Hsien
口試委員:陳逸民鍾菁哲朱元三劉宗憲
口試委員(外文):Chen, Yih-MinChung, Ching-CheChu, Yuan-SunLiu, Tsung-Hsien
口試日期:2021-01-14
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:55
中文關鍵詞:廣義空間調變傳送天線組合SA-SrFSDCORDICrFSD
外文關鍵詞:generalized spatial modulationtransmitter antenna comboSA-SrFSDCORDICrFSD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
近年來為了在多天線(Multiple Input Multiple Output, MIMO)系統下有效增加throughput rate,提出了許多解決方案,其中空間調變(Spatial Modulation)為其中一種方式。在傳統的MIMO系統中,每個傳送天線需有相對應數量的RF chains。而空間調變多天線系統(Spatial Modulation Multiple Input Multiple Output, SM-MIMO)則是改用單一射頻鏈(Radio Frequency chains, RF chains),用以傳送index資訊。至於在廣義空間調變(Generalized Spatial Modulation, GSM)中,我們除了原先的傳送天線以及接收天線外,還需要額外考慮了RF chains的數量。並且使用了傳送天線組合(Transmitter Antenna Combo, TAC)的搭配方式,用以做為新的傳送天線索引(index),在結合原先的符元(symbol)訊息後加以傳送。快速演算法方面,則是使用了COordinate Rotation DIgital Computer (CORDIC),以及reduce Fixed Sphere Decoder (rFSD)這兩個演算法來進行實現演算法。並改用sorting assisted successive rFSD (SA-SrFSD)演算法,用以達成廣義空間調變的解調。這裡基於332-sets的硬體架構進行改良,其環境為5根傳送天線、4根接收天線以及利用了2組RF chains來觸發傳送天線。後續為了擴增TAC可以攜帶的訊息量,因此將環境調整成,8根傳送天線、根接收天線以及2組RF chains,數位調變為64-QAM,並對其環境提出655-sets以及4444-sets兩種新架構,觀察是否可以更有效增加throughput rate以及hardware efficiency。至於在VLSI硬體實現方面,使用了TSMC 90nm CMOS製程利用Synopsys Design Compiler軟體進行合成(Syntehsis)、並且使用Cadence SOC Innovous來進行佈局繞線(Place Route)。其模擬結果如下所示:兩個架構最大操作頻率為322 MHz,所需gate count分別為302.2K以及350.1K,至於normalization throughput rate則為1720.5Mbps以及2580.8Mbps。再將這些結果整理,並且與332-sets硬體架構以及其他空間調變數據做比較,最後可以得到結論。在兩個新提出的架構中,4444-sets同時具有更為優秀的normalization throughput rate以及hardware efficiency。
In recent years, many solutions have been proposed in order to improve multiple input multiple output (MIMO) system throughput rate. Among those solutions, spatial modulation is one kind of these solutions. However, in traditional MIMO system, the transmitting antennas must need a corresponding amount of Radio Frequency chains (RF chains). Then, spatial modulation multiple input multiple output (SM-MIMO) system uses one radio frequency chains (RF chains) to transmit index information. As for generalized spatial modulation (GSM), we also need to consider amount of RF chains except original transmitter and receiver antennas. We get a new transmitter index by using transmitter antenna combo sets (TAC). Then, new transmitted information combines new transmitter index and original symbol. This paper uses the sorting assisted successive rFSD (SA-SrFSD) algorithm to demodulate GSM signals. The fast calculation algorithm uses COordinate Rotation DIgital Computer (CORDIC) and reduce fixed sphere decoder (rFSD) to achieve this system. This work bases on 332-sets hardware and improve it, furthermore the communication system of 332-sets considers 5 transmitter antennas, 4 receiver antennas, and 2 active transmitter antennas by using RF chains. But, the communication system of this paper uses 8 transmitter antennas, 4 receiver antennas, and 2 RF chains, digital modulation of this syetem is 64-QAM. We propose two new hardware architecture, 655-sets and 4444-sets, and observe the new hardware architecture with better normalization throughput rate and hardware efficiency or not. Also, we propose two new architectures, and observe whether these architectures can improve system throughput rate effectively. The VLSI hardware realization uses TSMC 90nm CMOS, sythesis with Synopsys Design Compiler, and place route with Cadence SOC Innovous.As follow hardware simulation results, the operating frequency of them is 322MHz. Gate counts respectively are 302.2K and 350.1K.Normalization throughput rates are 1720.5 Mbps and 2580.8 Mbps, separately. Finally, comparing these new hardware architectures with other spatial modulation result, in conclusion, 4444-sets hardware architecture has better normalization throughput rate and hardware efficiency.
目錄
1 簡介 1
1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 內容大綱 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 廣義空間調變多天線系統 3
2.1 空間調變 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 廣義空間調變 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 SA-SrFSD 演算法 10
4 延伸型硬體架構與模擬 19
4.1 655-sets 架構 & 4444-sets 架構 . . . . . . . . . . . . . . . . . . . . . . 20
4.2 655-sets 硬體架構 & 4444-sets 硬體架構 . . . . . . . . . . . . . . . . . 27
4.3 655-sets 4444-sets 硬體合成模擬結果數據分析 . . . . . . . . . . . . . 39
5 結論 45
6 特別致謝 46
參考文獻 47
論文口試意見答覆與論文修改 52

[1] D. Tse and P.Viswanath Fundamentals of Wireless Communications. Pretice
Hall,2005.
[2] J. Proakis and M. Salehi, Digital Communications. 5th Ed. NcGraw Hill, 2008.
[3] M. Di Renzo, H. Haas, and P. M. Grant, “Spatial modulation for multipleantenna wireless systems - a survey,” IEEE Communication Magazine, vol. 49,
no. 12, pp.182-191, Dec. 2011.
[4] J. Wang, S. Jia, and J. Song, “Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme,” IEEE Trans.
on Wireless Comm., vol. 11, no. 4, Apr. 2012.
[5] T.-H. Liu, S.-L. Wang, Y.-J. Lin, C.-E. Chen, and Y.-S. Chu, “Fix-complexity
tree search schemes for detecting generalized spatially modulated signals,” early
access, IEEE Trans. Circuits and Systems I: Regular Papers, 2021.
[6] A. Tomasoni, M. Ferrari, S. Bellini, M. Siti, and T. Cupaluolo, “A hardware
oriented low-complexity LORD MIMO detector,” in Proc. IEEE ICC, 2010.
[7] M. M. Mansour, S. P. Alex, and L. M.A. Jalloul, “Reduced complexity softoutput MIMO sphere detectors—part II: architectural optimizations,” IEEE Trans.
on Signal Processing, Vol. 62, no. 21, pp. 5521-5535, Nov. 2014.
[8] 葉宥志, 空間調變多天線系統之低複雜度最大概似偵測演算法硬體架構設計與實
現, 國立中正大學通訊工程研究所碩士論文. 民國107年7月.
[9] C.-H. Li, Y.-L. Chen, W.-N. Hu, C.-E. Chen, and Y.-H. Huang, “A 4 × 64
MIMO detector for generalized spatial modulation system,” IEEE Trans. Circuits
and Systems I: Regular Papers, vol. 66, no, 9, pp. 3585-3597, Sept. 2019.
[10] Y. Xiao, Z. Yang, L. Dan, P. Yang, L. Yin, and W. Xiang, “Low-complexity
signal detection for generalized spatial modulation,” IEEE Comm. Letters, vol.
18, no. 3, pp. 403-306, Mar. 2014.
[11] T. L. Narasimhan, P. Raviteja, and A. Chockalingam, “Generalized spatial modulation in large-scale multiuser MIMO systems,” IEEE Trans. on Wireless Comm.,
vol. 14, no. 7, pp. 3764-3779, Jul. 2019.
[12] C.-T. Lin, W.-R. Wu, C.-Y. Liu, “Low-complexity ML detectors for generalized
spatial modulation systems,” IEEE Transactions on Communications, vol. 63,
no. 11, pp. 4214-4230, Nov. 2015.
[13] T.-H. Liu, C.-E. Chen, C.-H. Liu, C.-E. Chen, “Fast maximum likelihood detection of the generalized spatially modulated signals using successive sphere
decoding algorithms,” IEEE Comm. Letters, vol. 23, no.4, pp. 656-659, Apr.
2019.
[14] T.-H. Liu, C.-N. Chiu, P.-Y. Liu, and Y.-S. Chu , “Block-wise QR-decomposition
for the layered and hybrid Alamouti STBC MIMO systems: algorithms and hardware architectures,” IEEE Trans. on Signal Processing, vol. 62, no.18, pp. 4737-
4747, Jul. 2014.
[15] Y.H. Hu, “CORDIC-based VLSI architectures for digital signal processing,”
IEEE Signal Processing Magazine, Vol. 9, no. 3, pp. 16-35, July 1992.
[16] H. Kim, J. Park, H. Lee, and J. Kim, “Near-ML MIMO Detection algorithm
with LR-aided fixed-complexity tree searching,” IEEE Communications Letters,
Vol. 18, no. 12, pp. 2221-2224, Dec. 2014
[17] S. Insel, and L. Spence, Linear Algebra, Prentice Hill.
[18] A. Maltsev, V. Pestretsov, R. Maslennikov, and A. Khoryaev, “Triangular systolic array with reduced latency for QR-decomposition of complex matrices,” in
Proc. IEEE Int. Symp. Circuits and Systems(ISCAS), 2006, pp. 385–388.
[19] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 Years of
CORDIC: algorithms, architectures, and applications,” IEEE Trans.Circuits and
Systems I Regular Papers, vol. 56, no, 9, pp. 1893-1907, Sep.2009
[20] L. Barbero and J. Thompson, “Fixed the complexity of the sphere decoder foe
MIMO detection,” IEEE Trans. on Wireless Comm., vol. 7, no. 6, pp. 2131-2142,
July 2012.
[21] B. Zheng, S. Lin, M. Wen, Q. Li, Y. H, and F. Chen, “Fixed-complexity sphere
decoding for soft detection of generalized spatial modulation,” IEEE Globecom
Workshops (GC Wkshps), Dec. 2017, pp. 1-6.
[22] T.-H. Liu, “Comparisons of two real-valued MIMO signal models and their associated ZF-SIC detectors over the rayleigh fading channel,” IEEE Trans. Wireless Commun., vol.12, no.12, pp.6054-6066, Dec. 2013.
[23] M. Shabany, and P. G. Gulak, “A 675 Mbps, 4 Œ 4 64-QAM K-Best MIMO
Detector in 0.13 m CMOS,” IEEE Trans. on VLSI System, vol. 20, no. 1, pp.
135-147, Jan 2012.
[24] G. Georgis, K. Nikitopoulos, and K. Jamieson, “Geosphere: an exact depth-first
sphere decoder architecture scalable to very dense constellations,” IEEE Access,
vol. 5, pp. 4233-4249, 2017.
[25] C. Zhang, L. Liu, Y. Wang, M. Zhu, O. Edfors, and V. Öwall, “A highly parallelized MIMO detector for vector-based reconfigurable architectures,” in Proc.
IEEE Wireless Comm. and Networking Conference, Apr. 2013, pp. 3844–3849.
[26] M. Karthikeyan and D. Saraswady, “Sphere decoding using threshold based
Schnorr-Euchner enumeration in MIMO system,” in Proc. Int. Conf. Recent
Trends Inf. Technol., Dec. 2014, pp. 1-4.
[27] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere
decoding for MIMO detection,” IEEE Journal on Selected Areas in Comm., vol.
24, no. 3, pp. 491-503, Mar. 2006.
[28] A. Burg, VLSI Circuits for MIMO Communication Systems. Ph. D Disseration,
Swiss Federal Institute of Technology Zurich, 2006.
[29] M. Mahdavi and M. Shabany, “Novel MIMO detection algorithm for high-order
constellations in the complex domain,” IEEE Trans. on VLSI Systems, vol. 21,
no. 5, pp. 834-847, May 2012.
[30] G.-H. Lee and T.-H. Kim, “Implementation of a near-optimal detector for spatial modulation MIMO systems,” IEEE Trans. Circuits and Systems II: Express
Briefs, vol. 63, no. 10, pp. 954-958, Oct. 2016.
[31] T.-H. Liu, Y.-Z. Ye, C.-K. Huang, C.-E. Chen, Y.-T. Hwang, and Y.-S. Chu, “A
low-complexity maximum likelihood detector for the spatially modulated signals:algorithm and hardware implementation,” IEEE Trans. Circuits and Systems II:
Express Briefs, vol. 66, no. 11, pp. 1820-1824, Nov. 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top