|
[1] D. Tse and P.Viswanath Fundamentals of Wireless Communications. Pretice Hall,2005. [2] J. Proakis and M. Salehi, Digital Communications. 5th Ed. NcGraw Hill, 2008. [3] M. Di Renzo, H. Haas, and P. M. Grant, “Spatial modulation for multipleantenna wireless systems - a survey,” IEEE Communication Magazine, vol. 49, no. 12, pp.182-191, Dec. 2011. [4] J. Wang, S. Jia, and J. Song, “Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme,” IEEE Trans. on Wireless Comm., vol. 11, no. 4, Apr. 2012. [5] T.-H. Liu, S.-L. Wang, Y.-J. Lin, C.-E. Chen, and Y.-S. Chu, “Fix-complexity tree search schemes for detecting generalized spatially modulated signals,” early access, IEEE Trans. Circuits and Systems I: Regular Papers, 2021. [6] A. Tomasoni, M. Ferrari, S. Bellini, M. Siti, and T. Cupaluolo, “A hardware oriented low-complexity LORD MIMO detector,” in Proc. IEEE ICC, 2010. [7] M. M. Mansour, S. P. Alex, and L. M.A. Jalloul, “Reduced complexity softoutput MIMO sphere detectors—part II: architectural optimizations,” IEEE Trans. on Signal Processing, Vol. 62, no. 21, pp. 5521-5535, Nov. 2014. [8] 葉宥志, 空間調變多天線系統之低複雜度最大概似偵測演算法硬體架構設計與實 現, 國立中正大學通訊工程研究所碩士論文. 民國107年7月. [9] C.-H. Li, Y.-L. Chen, W.-N. Hu, C.-E. Chen, and Y.-H. Huang, “A 4 × 64 MIMO detector for generalized spatial modulation system,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 66, no, 9, pp. 3585-3597, Sept. 2019. [10] Y. Xiao, Z. Yang, L. Dan, P. Yang, L. Yin, and W. Xiang, “Low-complexity signal detection for generalized spatial modulation,” IEEE Comm. Letters, vol. 18, no. 3, pp. 403-306, Mar. 2014. [11] T. L. Narasimhan, P. Raviteja, and A. Chockalingam, “Generalized spatial modulation in large-scale multiuser MIMO systems,” IEEE Trans. on Wireless Comm., vol. 14, no. 7, pp. 3764-3779, Jul. 2019. [12] C.-T. Lin, W.-R. Wu, C.-Y. Liu, “Low-complexity ML detectors for generalized spatial modulation systems,” IEEE Transactions on Communications, vol. 63, no. 11, pp. 4214-4230, Nov. 2015. [13] T.-H. Liu, C.-E. Chen, C.-H. Liu, C.-E. Chen, “Fast maximum likelihood detection of the generalized spatially modulated signals using successive sphere decoding algorithms,” IEEE Comm. Letters, vol. 23, no.4, pp. 656-659, Apr. 2019. [14] T.-H. Liu, C.-N. Chiu, P.-Y. Liu, and Y.-S. Chu , “Block-wise QR-decomposition for the layered and hybrid Alamouti STBC MIMO systems: algorithms and hardware architectures,” IEEE Trans. on Signal Processing, vol. 62, no.18, pp. 4737- 4747, Jul. 2014. [15] Y.H. Hu, “CORDIC-based VLSI architectures for digital signal processing,” IEEE Signal Processing Magazine, Vol. 9, no. 3, pp. 16-35, July 1992. [16] H. Kim, J. Park, H. Lee, and J. Kim, “Near-ML MIMO Detection algorithm with LR-aided fixed-complexity tree searching,” IEEE Communications Letters, Vol. 18, no. 12, pp. 2221-2224, Dec. 2014 [17] S. Insel, and L. Spence, Linear Algebra, Prentice Hill. [18] A. Maltsev, V. Pestretsov, R. Maslennikov, and A. Khoryaev, “Triangular systolic array with reduced latency for QR-decomposition of complex matrices,” in Proc. IEEE Int. Symp. Circuits and Systems(ISCAS), 2006, pp. 385–388. [19] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 Years of CORDIC: algorithms, architectures, and applications,” IEEE Trans.Circuits and Systems I Regular Papers, vol. 56, no, 9, pp. 1893-1907, Sep.2009 [20] L. Barbero and J. Thompson, “Fixed the complexity of the sphere decoder foe MIMO detection,” IEEE Trans. on Wireless Comm., vol. 7, no. 6, pp. 2131-2142, July 2012. [21] B. Zheng, S. Lin, M. Wen, Q. Li, Y. H, and F. Chen, “Fixed-complexity sphere decoding for soft detection of generalized spatial modulation,” IEEE Globecom Workshops (GC Wkshps), Dec. 2017, pp. 1-6. [22] T.-H. Liu, “Comparisons of two real-valued MIMO signal models and their associated ZF-SIC detectors over the rayleigh fading channel,” IEEE Trans. Wireless Commun., vol.12, no.12, pp.6054-6066, Dec. 2013. [23] M. Shabany, and P. G. Gulak, “A 675 Mbps, 4 Œ 4 64-QAM K-Best MIMO Detector in 0.13 m CMOS,” IEEE Trans. on VLSI System, vol. 20, no. 1, pp. 135-147, Jan 2012. [24] G. Georgis, K. Nikitopoulos, and K. Jamieson, “Geosphere: an exact depth-first sphere decoder architecture scalable to very dense constellations,” IEEE Access, vol. 5, pp. 4233-4249, 2017. [25] C. Zhang, L. Liu, Y. Wang, M. Zhu, O. Edfors, and V. Öwall, “A highly parallelized MIMO detector for vector-based reconfigurable architectures,” in Proc. IEEE Wireless Comm. and Networking Conference, Apr. 2013, pp. 3844–3849. [26] M. Karthikeyan and D. Saraswady, “Sphere decoding using threshold based Schnorr-Euchner enumeration in MIMO system,” in Proc. Int. Conf. Recent Trends Inf. Technol., Dec. 2014, pp. 1-4. [27] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE Journal on Selected Areas in Comm., vol. 24, no. 3, pp. 491-503, Mar. 2006. [28] A. Burg, VLSI Circuits for MIMO Communication Systems. Ph. D Disseration, Swiss Federal Institute of Technology Zurich, 2006. [29] M. Mahdavi and M. Shabany, “Novel MIMO detection algorithm for high-order constellations in the complex domain,” IEEE Trans. on VLSI Systems, vol. 21, no. 5, pp. 834-847, May 2012. [30] G.-H. Lee and T.-H. Kim, “Implementation of a near-optimal detector for spatial modulation MIMO systems,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 63, no. 10, pp. 954-958, Oct. 2016. [31] T.-H. Liu, Y.-Z. Ye, C.-K. Huang, C.-E. Chen, Y.-T. Hwang, and Y.-S. Chu, “A low-complexity maximum likelihood detector for the spatially modulated signals:algorithm and hardware implementation,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 66, no. 11, pp. 1820-1824, Nov. 2019.
|