跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林玲蓉
研究生(外文):LIN, LING-JUNG
論文名稱:運用主訴進行語音及文字探勘評估病人之 憂鬱程度及自殺風險
論文名稱(外文):Using Chief Complaint for Speech Analytics and Text Mining to Assess Depression and Suicide Risk of Patients
指導教授:胡雅涵胡雅涵引用關係李珮如李珮如引用關係
指導教授(外文):HU,YA-HANLEE,PEI-JU
口試委員:張怡秋康藝晃
口試委員(外文):CHANG,I-CHIUKANG,YI-HUANG
口試日期:2021-06-08
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理系醫療資訊管理研究所
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:126
中文關鍵詞:憂鬱症自殺風險文字探勘語音分析
外文關鍵詞:DepressionSuicide riskText miningSpeech analytics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來,憂鬱症已經成為常見的文明疾病,具有憂鬱傾向者比非憂鬱者會表現出更多的徵狀,日常的生活品質也會受到影響。WHO的報告也說明憂鬱症是自殺的主要誘發因素之一,嚴重者甚至會因其自殺行為而死亡,因此,若不能及時發現高度自殺風險者並介入治療,可能會造成社會上龐大的健康損失及經濟負擔。而在臨床上不頻繁使用相關量表來評估憂鬱症的嚴重程度以及自殺風險的原因則包含了施測時所需要花費的時間及人力。因此,本研究讓個案口述近日的心情狀態,結合文本及語音研究的方法進行文字探勘及語音分析,輔以憂鬱量表及自殺風險評估量表評估個案當下憂鬱嚴重程度及自殺風險高低,希望本研究所建立的模型可以提供醫護人員一個臨床判斷之參考或是作為民眾的自評工具。

本研究收集了200位個案的基本資料、主訴音檔及相關量表的結果,以漢密爾頓憂鬱量表 (Hamilton Depression Rating Scale [HAMD]) 及SAD PERSONS量表作為兩個依變數,透過情感分析及詞頻-逆向文件頻率 (Term Frequency-Inverse Document Frequency [TF-IDF]) 等方法產生文本特徵,再以Cool Edit工具獲取語音特徵,最終使用決策樹、K-最近鄰、神經網路、支持向量機、邏輯迴歸、隨機森林以及自適應增強來建立預測模型。

在預測憂鬱傾向的實驗中,以文本加語音及個人資料所建立的隨機森林模型最佳 (AUC = 0.92);而在自殺風險的預測中,以邏輯迴歸模型的效能最佳 (AUC = 0.939),更透過實驗證明了焦慮及睡眠問題會影響自殺風險的高低。而本研究亦證明在預測憂鬱程度及自殺風險時,比起只考慮單一類型的特徵,同時列入文本特徵及語音特徵將有助於提升模型效能。
In recent years, depression has become a common civilization disease. Patients with depression will show more symptoms than those without depression, and their quality of life will also be affected. The report of WHO shows that depression is one of the main predisposing factors for suicide, and severe depression may even die due to suicidal behavior. Therefore, if people who have high risk of suicide cannot be detected and treated in time, it may cause huge health losses and economic burdens. Therefore, the study uses chief complaint for text and speech analytics to build the model. Then, the depression scale and risk assessment scale of suicide be used to assess the severity of depression and suicide risk. It is hoped that the model can provide a reference suggestion in clinical for medical staff.

The study collected the 200 cases, the data include personal information, the chief complaint, and the results of related scales. The HAMD and the SAD PERSONS were used as two dependent variables, and sentiment analysis and TF-IDF were used to generate text features, and then use the Cool Edit tool to obtain speech features, and finally use Decision Trees, K-Nearest Neighbor, Neural Network, Support Vector Machine, Logistic Regression, Random Forests, and AdaBoost to build predictive models.

In the experiments to predict severity of depression, the random forest classifier is the best (AUC = 0.92). In the experiments to predict suicide risk, the logistic regression classifier has the best performance (AUC = 0.939), it has been proved that anxiety and sleep problems can affect the level of suicide risk. The study also proved that when predicting depression and suicide risk, instead of considering only a single categorical of features, including text features and speech features at the same time will help improve the model's performance.
圖目錄
表目錄
第一章、 緒論
1.1 研究背景
1.2 研究動機
1.3 研究目的
第二章、 文獻探討
2.1 基於文本的憂鬱症研究
2.2 基於語音的憂鬱症研究
第三章、 研究方法
3.1 研究架構與流程
3.2 資料蒐集
3.3 變數定義
3.3.1 依變數定義
3.3.2 自變數定義
3.4 資料前處理
3.5 特徵值擷取
3.5.1 Term Frequency-Inverse Document Frequency
3.5.2 情感分析43
3.5.3 Cool Edit pro 2.1
3.6 資料探勘分析技術
3.6.1 決策樹
3.6.2 K-最近鄰演算法
3.6.3 類神經網路
3.6.4 支持向量機
3.6.5 邏輯迴歸
3.6.6 隨機森林
3.6.7 自適應增強
3.7 實驗設計
3.7 實驗驗證與評估指標
第四章、 實驗建構與評估
4.1 實驗資料
4.2 實驗結果與評估
4.2.1 實驗1
4.2.2 實驗2
4.2.3 實驗3
4.2.4 實驗4
4.2.5 實驗5
4.2.6 實驗6
4.2.7 實驗7
4.2.8 實驗8
4.3 討論
第五章、 研究結論與建議
5.1 研究結論
5.2 研究限制
5.3 未來研究方向
參考文獻
附錄

中文文獻
American Psychiatric Association (2018)。DSM-5精神疾病診斷與統計 (曾念生譯)。台北: 合記出版社。(原著出版於2013年)。
廖士程、李明濱、龍佛衛、張家銘、吳佳儀 (2015)。台灣自殺防治十年回顧檢討與展望。台灣公共衛生雜誌,34(3),227-239。http://doi.org/10.6288/TJPH201534103131

英文文獻
Alessia, D., Ferri, F., Grifoni, P., & Guzzo, T. (2015). Approaches, tools and applications for sentiment analysis implementation. International Journal of Computer Applications, 125(3). http://doi.org/10.5120/ ijca2015905866
Alghowinem, S., Goecke, R., Wagner, M., Epps, J., Breakspear, M., & Parker, G. (2012, May 23-25). From Joyous to Clinically Depressed: Mood Detection Using Spontaneous Speech [Conference presentation]. In FLAIRS Conference (pp. 141-146), Marco Island, Florida, United States. https:/ / www.aaai.org/ ocs/ index.php/ FLAIRS/ FLAIRS12/ paper/ viewFile/ 4478/ 4782
Alghowinem, S., Goecke, R., Wagner, M., Epps, J., Gedeon, T., Breakspear, M., & Parker, G. (2013, May 26-31). A comparative study of different classifiers for detecting depression from spontaneous speech [Poster presentation]. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8022-8026), Vancouver, BC, Canada. https:/ / ieeexplore.ieee.org/ document/ 6639227
Al-Mosaiwi, M., & Johnstone, T. (2018). In an absolute state: Elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clinical Psychological Science, 6(4), 529-542. https://doi.org/10.1177/2167702617747074
Bowden, C. L. (2001). Strategies to reduce misdiagnosis of bipolar depression. Psychiatric Services, 52(1), 51-55. http://doi.org/10.1176/ appi.ps.52.1.51
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. http://doi.org/10.1023/ A:1010933404324
Baxter, D., & Appleby, L. (1999). Case register study of suicide risk in mental disorders. The British Journal of Psychiatry, 175(4), 322-326. http://doi.org/10.1192/bjp.175.4.322
Bernard, J. D., Baddeley, J. L., Rodriguez, B. F., & Burke, P. A. (2016). Depression, language, and affect: an examination of the influence of baseline depression and affect induction on language. Journal of Language and Social Psychology, 35(3), 317-326. http://doi.org/10.1177/ 0261927X15589186
Bewick, V., Cheek, L., & Ball, J. (2005). Statistics review 14: Logistic regression. Critical Care, 9(1), 112. http://doi.org/10.1186/ cc3045
Bourke, C., Douglas, K., & Porter, R. (2010). Processing of facial emotion expression in major depression: a review. Australian & New Zealand Journal of Psychiatry, 44(8), 681-696. http://doi.org/10.3109/ 00048674.2010.496359
Brown, T. M., Dibenedetti, D. B., Danchenko, N., Weiller, E., & Fava, M. (2016). Symptoms of anxiety and irritability in patients with major depressive disorder. J Depress Anxiety, 5(3), 237. http://doi.org/10.4172/ 2167-1044.1000237
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–897. https://doi.org/10.1037/0022-006X.56.6.893
Burdisso, S. G., Errecalde, M., & Montes-y-Gómez, M. (2019). A text classification framework for simple and effective early depression detection over social media streams. Expert Systems with Applications, 133, 182-197. http://doi.org/10.1016/ j.eswa.2019.05.023
Bennabi, D., Vandel, P., Papaxanthis, C., Pozzo, T., & Haffen, E. (2013). Psychomotor retardation in depression: a systematic review of diagnostic, pathophysiologic, and therapeutic implications. BioMed Research International, 1-18. http://doi.org/10.1155/ 2013/ 158746
Chomutare, T., Årsand, E., & Hartvigsen, G. (2015, June). Mining symptoms of severe mood disorders in large internet communities [Paper presentation]. In 2015 IEEE 28th International Symposium on Computer-Based Medical Systems (pp. 214-219), NW Washington, DC, United States. https:/ / ieeexplore.ieee.org/ document/ 7167489
Cohn, J. F., Kruez, T. S., Matthews, I., Yang, Y., Nguyen, M. H., Padilla, M. T., Zhou, F. & De la Torre, F. (2009, September 10-12). Detecting depression from facial actions and vocal prosody [Conference presentation]. In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, Amsterdam, Netherlands. http://toc.proceedings.com/ 06765webtoc.pdf
Cheng, Q., Li, T. M., Kwok, C. L., Zhu, T., & Yip, P. S. (2017). Assessing suicide risk and emotional distress in Chinese social media: a text mining and machine learning study. Journal of Medical Internet Research, 19(7), e243. http://doi.org/10.2196/ jmir.7276
Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10-49. https:/ / doi.org/10.1016/ j.specom.2015.03.004
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. http://doi.org/10.1007/ BF00994018
De Choudhury, M., Gamon, M., Counts, S., & Horvitz, E. (2013, July 8-11). Predicting depression via social media [Conference presentation]. The International AAAI Conference on Weblogs and Social Media (ICWSM), Cambridge, Massachusetts, United States. https:/ / www.microsoft.com/ en-us/ research/ wp-content/ uploads/ 2016/ 02/ icwsm_13.pdf
Darby, J. K., & Hollien, H. (1977). Vocal and speech patterns of depressive patients. Folia Phoniatrica et Logopaedica, 29(4), 279-291. https:/ / doi.org/10.1159/ 000264098
Dibeklioğlu, H., Hammal, Z., & Cohn, J. F. (2017). Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE Journal of Biomedical and Health Informatics, 22(2), 525-536. http://doi.org/10.1109/ JBHI.2017.2676878
Degottex, G., Kane, J., Drugman, T., Raitio, T., & Scherer, S. (2014, May 4-9). COVAREP—A collaborative voice analysis repository for speech technologies [Paper presentation]. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy. https:/ / ieeexplore.ieee.org/ document/ 6853739
Dreisbach, C., Koleck, T. A., Bourne, P. E., & Bakken, S. (2019). A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data. International Journal of Medical Informatics, 125, 37-46. http://doi.org/10.1016/ j.ijmedinf.2019.02.008
Evans, M., & Mottram, P. (2000). Diagnosis of depression in elderly patients. Advances in Psychiatric Treatment, 6(1), 49-56. http://doi.org/10.1192/ apt.6.1.49
Fast, L. A., & Funder, D. C. (2010). Gender Differences in the Correlates of Self‐Referent Word Use: Authority, Entitlement, and Depressive Symptoms. Journal of Personality, 78(1), 313-338. https:/ / doi.org/10.1111/ j.1467-6494.2009.00617.x
Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-780), 1612. http://doi.org/10.1007/ 3-540-49097-3_1
France, D. J., Shiavi, R. G., Silverman, S., Silverman, M., & Wilkes, M. (2000). Acoustical properties of speech as indicators of depression and suicidal risk. IEEE Transactions on Biomedical Engineering, 47(7), 829-837. http://doi.org/10.1109/ 10.846676
Gaboda, D., Lucas, J., Siegel, M., Kalay, E., & Crystal, S. (2011). No longer undertreated? Depression diagnosis and antidepressant therapy in elderly long‐stay nursing home residents, 1999 to 2007. Journal of the American Geriatrics Society, 59(4), 673-680. http://doi.org/10.1111/ j.1532-5415.2011.03322.x
Hamilton, M. (1959). Hamilton anxiety scale. Group, 1, 4. http://www.ifrg.uzh.ch/PDF/hama.pdf
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56. http://doi.org/10.1136/jnnp.23.1.56
Harris, E. C., & Barraclough, B. (1997). Suicide as an outcome for mental disorders. A meta-analysis. British Journal of Psychiatry, 170(3), 205-228. http://doi.org/10.1192/ bjp.170.3.205
Høyer, E. H., Mortensen, P. B., & Olesen, A. V. (2000). Mortality and causes of death in a total national sample of patients with affective disorders admitted for the first time between 1973 and 1993. The British Journal of Psychiatry, 176(1), 76-82. http://doi.org/10.1192/ bjp.176.1.76
Hashim, N. W., Wilkes, M., Salomon, R., Meggs, J., & France, D. J. (2017). Evaluation of voice acoustics as predictors of clinical depression scores. Journal of Voice, 31(2), 256-e1. http://doi.org/10.1016/ j.jvoice.2016.06.006
Institute for Health Metrics and Evaluation (2019). GBD Compare. https:/ / vizhub.healthdata.org/ gbd-compare/
Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics, (4), 580-585. http://doi.org/10.1109/ TSMC.1985.6313426
Ku, L. W., Ho, H. W., & Chen, H. H. (2009). Opinion mining and relationship discovery using CopeOpi opinion analysis system. Journal of the American Society for Information Science and Technology, 60(7), 1486-1503. http://doi.org/10.1002/ asi.21067
Karmen, C., Hsiung, R. C., & Wetter, T. (2015). Screening Internet forum participants for depression symptoms by assembling and enhancing multiple NLP methods. Computer Methods and Programs in Biomedicine, 120(1), 27-36. http://doi.org/10.1016/ j.cmpb.2015.03.008
Kaneita, Y., Ohida, T., Uchiyama, M., Takemura, S., Kawahara, K., Yokoyama, E., Miyake, T., Harano, S., Suzuki, K., & Fujita, T. (2006). The relationship between depression and sleep disturbances: a Japanese nationwide general population survey. Journal of Clinical Psychiatry, 67(2), 196-203. https://doi.org/10.4088/JCP.v67n0204
Liu, X. (2004). Sleep and adolescent suicidal behavior. Sleep, 27(7), 1351-1358. https://doi.org/10.1093/sleep/27.7.1351
Liu, Z., Hu, B., Li, X., Liu, F., Wang, G., & Yang, J. (2017). Detecting Depression in Speech Under Different Speaking Styles and Emotional Valences. Brain Informatics, 261. http://doi.org/10.1007/ 978-3-319-70772-3_25
Leis, A., Ronzano, F., Mayer, M. A., Furlong, L. I., & Sanz, F. (2019). Detecting signs of depression in tweets in Spanish: behavioral and linguistic analysis. Journal of Medical Internet Research, 21(6), e14199. http://doi.org/10.2196/ 14199
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133. http://doi.org/10.2307/ 2268029
Mundt, J. C., Snyder, P. J., Cannizzaro, M. S., Chappie, K., & Geralts, D. S. (2007). Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology. Journal of Neurolinguistics, 20(1), 50-64. http://doi.org/10.1016/ j.jneuroling.2006.04.001
Ma, L., Wang, Z., & Zhang, Y. (2017, May). Extracting depression symptoms from social networks and web blogs via text mining [Paper presented]. In International Symposium on Bioinformatics Research and Applications (pp. 325-330), Honolulu, United States. https:/ / link.springer.com/ chapter/ 10.1007%2F978-3-319-59575-7_29
Nolen-Hoeksema, S. (1987). Sex differences in unipolar depression: evidence and theory. Psychological Bulletin, 101(2), 259. http://doi.org/10.1037/ 0033-2909.101.2.259
Neuman, Y., Cohen, Y., Assaf, D., & Kedma, G. (2012). Proactive screening for depression through metaphorical and automatic text analysis. Artificial Intelligence in Medicine, 56(1), 19-25. http://doi.org/10.1016/ j.artmed.2012.06.001
Nguyen, T., Phung, D., Dao, B., Venkatesh, S., & Berk, M. (2014). Affective and content analysis of online depression communities. IEEE Transactions on Affective Computing, 5(3), 217-226. http://doi.org/10.1109/ TAFFC.2014.2315623
Nilsonne, Å., Sundberg, J., Ternström, S., & Askenfelt, A. (1988). Measuring the rate of change of voice fundamental frequency in fluent speech during mental depression. The Journal of the Acoustical Society of America, 83(2), 716-728. http://doi.org/10.1121/ 1.396114
Osman, A., Barrios, F. X., Aukes, D., Osman, J. R., & Markway, K. (1993). The Beck Anxiety Inventory: Psychometric properties in a community population. Journal of Psychopathology and Behavioral Assessment, 15(4), 287-297. http://doi.org/10.1007/ BF00965034
Patterson, W. M., Dohn, H. H., Bird, J., & Patterson, G. A. (1983). Evaluation of suicidal patients: the SAD PERSONS scale. Psychosomatics, 24(4), 343-349. https://doi.org/10.1016/S0033-3182(83)73213-5
Pigeon, W. R., Pinquart, M., & Conner, K. (2012). Meta-analysis of sleep disturbance and suicidal thoughts and behaviors. The Journal of Clinical Psychiatry, 73(9), 1160-1167. https://doi.org/10.4088/JCP.11r07586
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. http://doi.org/10.1007/ BF00116251
Regestein, Q., Natarajan, V., Pavlova, M., Kawasaki, S., Gleason, R., & Koff, E. (2010). Sleep debt and depression in female college students. Psychiatry Research, 176(1), 34-39. http://doi.org/10.1016/j.psychres.2008.11.006
Savard, M. (2004). Bridging the communication gap between physicians and their patients with physical symptoms of depression. Primary care companion to the Journal of Clinical Psychiatry, 6(suppl 1), 17. http://doi.org/10.1097/00152193-200407000-00021
Sokero, P. (2006). Suicidal ideation and attempts among psychiatric patients with major depressive disorder. KTL. http://doi.org/10.1016/ j.jad.2006.04.028
Stasak, B., Epps, J., & Goecke, R. (2019a). Automatic depression classification based on affective read sentences: Opportunities for text-dependent analysis. Speech Communication, 115, 1-14. http://doi.org/10.1016/j.specom.2019.10.003
Stasak, B., Epps, J., & Goecke, R. (2019b). An investigation of linguistic stress and articulatory vowel characteristics for automatic depression classification. Computer Speech & Language, 53, 140-155. http://doi.org/10.1016/j.csl.2018.08.001
Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. http://doi.org/10.1109/ 21.97458
Sun, L., Li, H., Zhang, J., & Wu, Q. (2015). Psychological strains and suicide intent: Results from a psychological autopsy study with Chinese rural young suicides. International Journal of Social Psychiatry, 61(7), 677-683. https://doi.org/10.1177/0020764015573087
Thompson, E. (2015). Hamilton rating scale for anxiety (HAM-A). Occupational Medicine, 65(7), 601. http://doi.org/10.1093/ occmed/ kqv054
Tung, C., & Lu, W. (2016). Analyzing depression tendency of web posts using an event-driven depression tendency warning model. Artificial Intelligence in Medicine, 66, 53-62. http://doi.org/10.1016/ j.artmed.2015.10.003
Trotzek, M., Koitka, S., & Friedrich, C. M. (2020). Utilizing Neural Networks and Linguistic Metadata for Early Detection of Depression Indications in Text Sequences. IEEE Annals of the History of Computing, 32(03), 588-601. http://doi.org/10.1109/ TKDE.2018.2885515
Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. IEEE Access, 7, 44883-44893. http://doi.org/10.1109/ ACCESS.2019.2909180
Tackman, A. M., Sbarra, D. A., Carey, A. L., Donnellan, M. B., Horn, A. B., Holtzman, N. S., Edwards, S., Pennebaker, J. & Mehl, M. R. (2019). Depression, negative emotionality, and self-referential language: A multi-lab, multi-measure, and multi-language-task research synthesis. Journal of Personality and Social Psychology, 116(5), 817. http://doi.org10.1037/ pspp0000187.supp
Tasnim, M., & Stroulia, E. (2019, May 28-31). Detecting Depression from Voice [Conference presentation]. In Canadian Conference on Artificial Intelligence (pp. 472-478), Kingston, Ontario at Queen’s University, Canada. https://link.springer.com/ chapter/ 10.1007%2F978-3-030-18305-9_47
Vandeputte, M., & de Weerd, A. (2003). Sleep disorders and depressive feelings: a global survey with the Beck depression scale. Sleep Medicine, 4(4), 343-345. http://doi.org/10.1016/ S1389-9457(03)00059-5
Williams, J. B. (1988). A structured interview guide for the Hamilton Depression Rating Scale. Archives of General Psychiatry, 45(8), 742-747. http://doi.org/10.1001/ archpsyc.1988.01800320058007
World Health Organization. (2017). Depression and other common mental disorders: global health estimates (No. WHO/ MSD/ MER/ 2017.2). World Health Organization. http://apps.who.int/iris/bitstream/10665/254610/1/WHO-MSD-MER-2017.2-eng.pdf?ua=1
Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D. & Campbell, A. T. (2014, September). Student Life: assessing mental health, academic performance and behavioral trends of college students using smartphones [Paper presented]. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 3-14), New York, NY, United States. https:/ /www.andrew.cmu.edu/ user/ fanglinc/ pubs/ ubicomp14-studentlife.pdf
Wang, S.-M., & Ku, L.-W. (2016, May). ANTUSD: A large Chinese sentiment dictionary [Paper presented]. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), Portorož, Slovenia. https://www.aclweb.org/ anthology/ L16-1428.pdf
Wu, C. S., Kuo, C. J., Su, C. H., Wang, S. H., & Dai, H. J. (2020). Using text mining to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records. Journal of Affective Disorders, 260, 617-623. http://doi.org/10.1016/ j.jad.2019.09.044
Wickham, S., Taylor, P., Shevlin, M., & Bentall, R. P. (2014). The impact of social deprivation on paranoia, hallucinations, mania and depression: the role of discrimination social support, stress and trust. PloS One, 9(8), e105140. http://doi.org/10.1371/ journal.pone.0105140
Wu, C. H., Yu, L. C., & Jang, F. L. (2005). Using semantic dependencies to mine depressive symptoms from consultation records. IEEE Intelligent Systems, 20(6), 50-58. http://doi.org/10.1109/ MIS.2005.115
Yoo, M., Lee, S., & Ha, T. (2019). Semantic network analysis for understanding user experiences of bipolar and depressive disorders on Reddit. Information Processing & Management, 56(4), 1565-1575. http://doi.org/10.1016/ j.ipm.2018.10.001
Zimmermann, J., Brockmeyer, T., Hunn, M., Schauenburg, H., & Wolf, M. (2017). First‐person pronoun use in spoken language as a predictor of future depressive symptoms: Preliminary evidence from a clinical sample of depressed patients. Clinical Psychology & Psychotherapy, 24(2), 384-391. http://doi.org/10.1002/ cpp.2006
Zimmerman, M., Martinez, J. H., Young, D., Chelminski, I., & Dalrymple, K. (2013). Severity classification on the Hamilton depression rating scale. Journal of Affective Disorders, 150(2), 384-388. http://doi.org/10.1016/ j.jad.2013.04.028
Zarandi, M. F., Soltanzadeh, S., Mohammadi, A., & Castillo, O. (2019). Designing a general type-2 fuzzy expert system for diagnosis of depression. Applied Soft Computing, 80, 329-341. http://doi.org/10.1016/ j.asoc.2019.03.027
Ösby, U., Brandt, L., Correia, N., Ekbom, A., & Sparén, P. (2001). Excess mortality in bipolar and unipolar disorder in Sweden. Archives of General Psychiatry, 58(9), 844-850. http://doi.org/10.1001/ archpsyc.58.9.844
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top