跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈協洲
研究生(外文):SHEN,HSIEH-CHOU
論文名稱:7075鋁合金焊接熱裂敏感性與機械性質關係研究
論文名稱(外文):Investigation of Sensitivity of Welding Crackcing and Mechanical Properties with 7075 Aluminum Alloy
指導教授:黃立仁黃立仁引用關係
指導教授(外文):Lih-Ren Hwang
口試委員:黃立仁郭宗祥陳狄成
口試委員(外文):Lih-Ren HwangTsung-Hsiang KuoCHEN,TI-CHENG
口試日期:2021-01-07
學位類別:碩士
校院名稱:中州科技大學
系所名稱:智慧自動化工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:58
中文關鍵詞:7075鋁合金材料鎢極氬氣電弧焊熱裂敏感性
外文關鍵詞:7075Aluminum AlloyMIGHot Cracking Sensibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討鎢極氬弧焊焊接7075鋁合金時,施加不同焊接條件和振動頻率製程條件,對焊件熱裂敏感性試驗影響作測試。焊接時施以不同焊速、電流和電壓,以及0~65.6赫茲頻率範圍的振動處理焊接中的焊件,實驗調查使用Houldcroft測試方法,探討7075鋁合金材料焊件熱裂敏感長度、微硬度、電導率,再和7075鋁合金材料利用穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)等特性測試進行比較分析。
另外,也藉由Houldcroft測試來模擬焊接熱影響區,並比較不同焊接條件的熱延性行為以及焊接熱裂敏感性;又透過光學顯微鏡(OM)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)的觀察、成份分析(EDS)和拉伸強硬度(Tensile test),及前面的焊裂性試驗等方法來進行分析比較。以及探討焊接熱循環對7075鋁合金材料熱影響區顯微組織的變化與機械性質的影響。

This study explores the influence of different welding conditions and vibration frequency process conditions on welding 7075 aluminum alloy by argon tungsten arc welding to test the influence of weldment thermal cracking sensitivity test. During welding, different welding speeds, currents and voltages, as well as vibration treatments in the frequency range of 0 to 65.6 Hz, were applied to the welding parts. The experimental investigation used the Houldcroft test method to explore the sensitive length, microhardness, and thermal cracking length of 7075 aluminum alloy weldments. The electrical conductivity is compared and analyzed with 7075 aluminum alloy material using transmission electron microscope (TEM), scanning electron microscope (SEM) and other characteristic tests. In addition, the Houldcroft test is also used to simulate the welding heat-affected zone, and the hot ductility behavior and welding hot crack sensitivity of different welding conditions are compared; and through the optical microscope (OM), the transmission electron microscope (TEM), and the scanning electron Microscope (SEM) observation, EDS component analysis and tensile strength test (Tensile test), and the previous welding crack test methods for analysis and comparison. And discuss the influence of welding thermal cycle on the microstructure and mechanical properties of the heat-affected zone of 7075 aluminum alloy.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VII
第一章 前言 1
第二章 文獻回顧 6
2.1 7075系鋁合金之析出強化 6
2.1.1 時效析出序列 6
2.1.2 時效硬化機構 10
2.2 再結晶與分散粒子 12
2.2.1 再結晶的機構 12
2.2.2 分散粒子對再結晶的影響 13
2.2.3 再結晶對分散粒子整合性的影響 14
2.2.4 影響分散粒子分佈之因素 16
2.2.5 細晶強化 17
2.3 氫致破裂機構 18
2.4 鋁合金焊接特性 22
2.4.1 焊道組織 22
2.4.2 熱影響區(HAZ)組織 26
第三章 實驗方法與步驟 27
3.1 材料規格與準備 27
3.2 熱處理 28
3.3 Houldcroft焊接熱裂敏感性測試 29
3.4 焊接加工 30
3-5 材料導電率 32
3.6 機械性質測試 32
3.7 顯微組織觀察與分析 34
3.8 實驗程序 36
第四章 結果與討論 37
4.1 焊接條件影響 37
4.2 顯微組織 39
4.3 硬度分布 40
4.4 裂縫觀察 42
4-5 熔池顯微組織 46
4-6 導電度測試 48
4-7 溶解區的裂縫觀察 49
第五章 結論 52
參考文獻 54
[1]I. J. Polmear: Light AlloysMetallurgy of the Light Metals, 2nd ed.,Edward Arnold, London, England, 1989, pp. 18-143.
[2]K. Asano and K. I. Hirano: Precipitation Process in an Al-Zn-Mg Alloy,Trans. JIM, vol. 9, 1968, pp.24-34.
[3]G. W. Lorimer and R. B. Nicholson: Further Results on the Nucleation of Precipitates in the Al-Zn-Mg system, Acta Metallurgica, vol. 14, 1966, pp.1009-1013.
[4]T. H. Sanders, Jr. and E. A. Starke, Jr.: Relationship of Microstructure to Monotonic and Cyclic straining of two Age Hardening Aluminum Alloys, Metall. Trans., vol. 7A, 1976, pp. 1407-1418.
[5]M. O. Speidel: Stress Corrosion Cracking of aluminum alloys, Metall. Trans. A, vol. 6A, 1975, pp. 631-642.
[6]W. Gruhl: Stress Corrosion Cracking of High Strength Aluminum Alloys, Z. Metallkd., vol. 75, 1984, pp. 819-826.
[7]Sindo Kou: Welding Metallurgy, John Wiley & Sons, NY, 1987, pp.129-295.
[8]J. R. Davis: Aluminum and Aluminum AlloysASM Specialty Handbook, ASM International, 1993, pp. 376-419.
[9]ASM Handbook volume 6 - Welding, Brazing, and Soldering, 1993, pp.528-540,722-739.
[10]“Welding Kaiser Aluminum”,1st ed. Kaiser Aluminum & Chemical Sales, Inc., 1984, chapter 2-4,7-9,14,21.
[11]T. Zacharia and D. K. Aidun: Elevated Temperature Mechanical Properties of Al-Li-Cu-Mg Alloy, Weld. J., 1988, pp. 281s-288s.
[12]E. F. Nippes, W. F. Savage, B.T. Bastin, H.F. Mason and R.M. Curran: An Investigation of the Hot Ductility of High Temperature Alloys, Weld. J., vol. 34, No. 4, 1995, pp. 183s-196s.
[13]P. N. T. Unwin, R. B. Nicholson: The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg Alloys, Acta Metallurgica, vol. 17, 1969, pp. 1379-1393.
[14]M. O. Speidel and M.V. Hyatt: Advances in Corrosion Science and Technology, vol. 2, Plenum Press, NY, 1972. , pp. 115-127
[15]R. E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., Boston, PWS Publishing Company, 1991, pp.515-535.
[16]C. E. Deiter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, 1986, pp. 65-158.
[17]劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚:“工程材料科學”,全華科技圖書出版,台北,台灣,民國82 年7 月,pp.433-486。
[18]A. K. Vasudevan and R. D. Doherty: Aluminum Alloys – Contemporary Research and Applications, Academic Press, Inc., San Diego, 1989, pp. 35-170.
[19]M. Conserva, E. Di Russo and O. Caloni: Comparison of the Influence of Chrominum and Zirconium on the Quench Sensitivity of Al-Zn-Mg-Cu Alloys, Metall. Trans., vol. 2, 1971, pp. 1227-1232.
[20]R. D. Doherty: Role of interfaces in kinetics of internal shape changes, Metal Science, vol. 16, 1982, pp. 1-13.
[21]H. M. Chan and F. J. Humphreys: Effect of Particle Stimulated Nucleation on Orientation of Recrystallized Grains, Metal Sci,. vol. 18, 1984, pp. 527-529.
[22]D. Williamand and Jr. Callister : Materials Science and Engineering , 3rd ed. , New York , John Wiley & Sons , Inc , 1994 , pp.92-162.
[23]D. A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, London, Chapman & Hall, 1993, pp. 44-47, 71-75 and 314-317.
[24]N. Adler, R. DeIASI and G. Geschwind: Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy, Metall. Trans., vol. 3, 1972, pp.3191-3200.
[25]G. Itoh, H. Saitoh, Bin-Lung Ou, H. Suzuki: Effect of Homogenization Conditions on Recrystallized Structure in Al-Zn-Mg-Cu Alloys Containing Chrimium, J. of Japan Inst. of Light Metals, vol. 36, No, 8, 1986, pp. 485-490.
[26]D. Nguyen, A. W. Thompson and I. M. Bernstein: Microstructural Effects on Hydrogen Embrittlement in High Purity 7075 Aluminum Alloy, Acta Metall., vol. 35, 1987, pp. 2417-2425.
[27]Mars G. Fontana: Corrosion Engineering 3rd ed., McGRAW-HILL, 1987, pp. 109-152.
[28]劉永輝、張佩芬: 金屬腐蝕學原理,航空工業出版社, 1993, pp. 124-150.
[29]C. A. Zappfe, C. E. Sims: Transactions AIME, vol. 145, 1941, pp. 225.
[30]A. R. Troiano: Transactions ASM, 1960, vol. 52, pp. 54.
[31]L. Ratke and W. Gruhl: Influence of Notches on the Stress Corrosion Cracking Behavior of AlZnMg Alloys, Werkst. U. Korro., vol. 31, 1980, pp. 768-773.
[32]B. F. Brown: Stress Corrosion Cracking of High Strength Steels, The Theory of Stress Corrosion Cracking in Alloys, ed. by Dr. J. C. Scully, NATO, Brusels, 1971, pp. 186-204.
[33]S. P. Lynch: Environmentally assisted cracking-Overview of evidence for an adsorption-induced localized-slip process, Acta Metall., vol. 36, No. 10, 1988, pp. 2639-2661.
[34]T. D. Burleigh: The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys, Corrosion, vol. 47, 1991, pp. 89-98.
[35]J. Koziarski: Some Considerations on Weldability of Aluminum Alloys, The Welding Journal, 1953, pp. 970-986.
[36]Paul E. Brown and C.M. Adams, Jr.: Fusion Zone Structures and Properties in Aluminum Alloys, Weld. J., 1960, pp. 520s-524s.
[37]W. L. Burch: The Effect of Welding Speed on Strength of 6061-T4 Aluminum Joints, Weld.J.37, 1958, pp. 361s-367s.
[38]D. E. Schillinger, I.G. Betz, F.W. Hussey and H. Markus: Improves Weld Strength in 2000 Series Aluminum Alloys, Weld. J., 1963, pp. 269s-275s.
[39]C. E. Cross, W.T. Tack, L.W. Loechel, and L.S. kramer: Aluminum Weldability and Hot Tearing Theory, Weldability of Materials, AMS. Materials, Park, Ohio, 1990, pp.275-282.
[40]W. I. Pumphery and D.C. Moore: Cracking during and after Solidification in some Aluminum-Copper-Magnesium Alloys of High Purity, J. Inst. Metals, 73, 1948, pp.425-438.
[41]W. I. Pumphrey and J.V.Lyons: Cracking during the Casting and Welding of the More Common Binary Aluminum Alloys of Commercial Quality, J. Inst. Metals, vol. 74, 1948, pp. 439-455.
[42]I. D. Dowd: Weld Cracking of Aluminum Alloys, Weld. J., vol. 31, No.10,1952, pp. 448s-456s.
[43]H. T. Kim, S.W. Nam and S.H. Hwang: Study on the solidification cracking behaviour of high strength aluminum alloy welds - effect of alloying elememts and solidification behaviours, J. Mater. Sci.,31, 3, 1996, Chapman & Hall Ltd, pp.2859-2864.
[44]M. Miyazaki, K.Nishio, M.Katoh, S.Mukae and H.W. Kerr: Weld. J., 1990, pp. 362s-371s.
[45]張進春,航太用高強度鋁合金焊接熱裂性與異質焊接焊後熱處理之研究,國立交通大學機械工程學系博士論文,新竹,2012
[46]鄭慶民,熱處理型鋁合金焊接性之研究,國立交通大學機械工程學系博士論文,新竹,2005
[47]溫晉源,2024鋁合金熱裂性及異質焊接機械性質之研究,國立台灣師範大學機電科技研究所碩士論文,台北,2010
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top